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Overview 
 

 

This paper examines the validity and precision of two non-experimental study designs (NXDs) 

that can be used in educational evaluation: the comparative interrupted time series (CITS) design 

and the difference-in-difference (DD) design. In a CITS design, program impacts are evaluated 

by looking at whether the treatment group deviates from its baseline trend by a greater amount 

than the comparison group. The DD design is a simplification of the CITS design – it evaluates 

the impact of a program by looking at whether the treatment group deviates from its baseline 

mean by a greater amount than the comparison group. The CITS design is a more rigorous 

design in theory, because it implicitly controls for differences in the baseline mean and trends 

between the treatment and comparison group. However, the CITS design has more stringent data 

requirements than the DD design: scores must be available for at least 4 time points before the 

intervention begins in order to estimate the baseline trend, which may not always be feasible.  

 

This paper examines the properties of these two designs using the example of the federal 

Reading First program, as implemented in a Midwestern state. The true impact of Reading First 

in this Midwestern state is known, because program effects can be evaluated using a regression 

discontinuity (RD) design, which is as rigorous as a randomized experiment under certain 

conditions. The application of the RD design to evaluate Reading First is a special case of the 

design, because not only are all conditions for internal validity met, but impacts estimates appear 

to be generalizable to all schools. Therefore, the RD design can be used to obtain a “benchmark” 

against which to compare the impact findings obtained from the CITS or DD design and to gauge 

the causal validity of these two designs. More formally, the internal validity of these two designs 

is assessed by looking at the “estimated bias” of their impact estimates – defined as the 

difference between the RD impact estimate and a given CITS or DD impact estimate. 

 

This paper explores several questions related to the CITS and DD designs. First, the paper 

examines whether a well-executed CITS design and/or DD design can produce valid inferences 

about the effectiveness of a school-level intervention such as Reading First – and specifically in 

situations where it is not feasible to choose comparison schools in the same districts as the 

treatment schools (which is recommended in the matching literature). Second, this paper 

explores the trade-off between bias reduction and precision loss across different methods of 

selecting comparison groups for the CITS/DD designs (e.g., one-to-one vs. one-to-many 

matching, matching with vs. without replacement). Third, this paper examines whether matching 

the comparison schools on pre-intervention test scores only is sufficient for producing causally 

valid impact estimates, or whether bias can be further reduced by also matching on baseline 

demographic characteristics (in addition to baseline test scores). And finally, this paper examines 

how the CITS design performs relative to the DD design, with respect to bias reduction and 

precision.  

 

Overall, the findings in this paper corroborate those of previous validation studies, showing that 

non-experimental designs (in this case the DD and CITS design) can produce internally valid 



 
 

estimates of program impacts when pretest scores are available, regardless of the matching 

method that is used to select comparison schools. Notably, this is the first study to demonstrate 

that the CITS design can produce internally valid results. This paper also contributes to the 

literature by showing that (1) using a comparison group that is “local” (i.e., from the same set of 

districts as the treatment schools) is not a necessary condition for obtaining causally valid 

estimates of program impacts; (2) further matching on demographic characteristics is not strictly 

necessary in the context of the DD or CITS design; and (3) the precision of impact estimates can 

be increased without compromising their validity, by using radius or one-to-many matching 

rather than nearest neighbor matching to select a comparison group. Because the analyses in this 

paper are based on an especially strong (and possibly atypical) application of the CITS and DD 

designs, these findings may not be generalizable to other contexts. 
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1 Background 
 

In recent years, randomized experiments have become the “gold standard” for evaluating 

educational interventions. When implemented properly, randomization guarantees that the 

treatment and control groups produced are equivalent in expectation at baseline, so that any 

difference between the two groups after the start of the intervention can be attributed to the effect 

of the intervention. For this reason, randomized experiments provide unbiased estimates of 

program impacts that are easy to understand and interpret.  

 

For a variety of reasons, however, it is not always practical or feasible to implement a 

randomized experiment, in which case a non-experimental design (NXD) must be used instead.
3
 

When using an NXD, researchers estimate the impact of a program by selecting a comparison 

group that looks similar to the treatment group on observed characteristics, typically through 

matching methods. An important threat to the causal validity of such designs is selection bias: 

differences in outcomes between the treatment and comparison group may be due to pre-existing 

or unobserved differences between the two groups, rather than to the effect of the program being 

evaluated. The challenge with NXDs – which is not unimportant – is to identify a comparison 

group that is equivalent to the treatment group in all ways except program participation. 

 

The internal (causal) validity of NXDs has been systematically examined in a body of literature 

known as “validation studies”, also called “within-study comparisons” or “design replication” 

studies. In such studies, researchers attempt to replicate the findings of a randomized experiment 

by using a comparison group that has been chosen using non-experimental methods. The bias of 

the NXD is defined as the difference between the experimental impact estimate (the best existing 

information about the “true” impact of the program) and the non-experimental estimate. A non-

experimental design is deemed “successful” at replicating the experimental benchmark if the bias 

is “sufficiently small”.
4
  

 

The results of these validation studies are mixed – in some cases NXDs are able to replicate the 

experimental result, while in other studies the NXDs produce findings that are substantially 

biased. Two recent surveys have tried to make sense of these findings by asking not only 

whether NXDs can provide the right answer, but also, under what conditions they can do so. The 

first of these two syntheses, by Glazerman, Levy and Meyers (2003), focuses on validation 

studies from the job training sector, while the second by Cook, Shadish, and Wong (2008) draws 

on recent studies from a variety of fields including education. 

 

                                                        
3 In this paper, we use the term “non-experimental design” to refer to any type of study that does not use random 

assignment to determine treatment receipt. Among non-experimental designs, some types of design are sometimes 

referred to as “quasi-experimental”, but the use of this term and what it includes differs across disciplines and 

researchers, so we simply use the term non-experimental. 
4
 Past studies have used different criteria for gauging what is “sufficiently small”. These criteria will be discussed in 

Section 4 of this paper. 
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Both syntheses conclude that NXDs can replicate experimental results, but that several necessary 

conditions must be met in order for impact estimates to be causally valid. First, the comparison 

group must be chosen from a group of candidates that have been prescreened based on having 

similar motivation and incentives as the treatment group (such as individuals who applied for the 

program).
5
 Second, the comparison group must be in close geographical proximity to the 

treatment group, for example in the same city or region (geographically local). Third, pretest 

scores must be available for the outcome of interest. This makes it possible to determine whether 

the comparison group had similar outcomes as the treatment group before the start of the 

intervention; if not, then the pretest data can be used to make the comparison group more similar 

to the treatment group at baseline (for example via matching methods). 

 

Importantly, both reviews also find that the actual statistical methods or design used to make the 

treatment and comparison group more equivalent and to control for bias (e.g., regression 

adjustment, propensity score matching, difference-in-difference analysis, etc.) matter little with 

respect to internal validity and bias reduction. If the three necessary conditions listed above are 

not in place (i.e., a comparison group that is prescreened and geographically local, and the 

availability of pretest scores for the analysis), then even the most sophisticated statistical analysis 

cannot guarantee the right result.
 
Conversely, if the three conditions are satisfied, then all 

statistical methods will produce similar findings. 

 

On the other hand, findings from a recent validation study indicate that in fact, the statistical 

method or design can matter even when the right conditions are in places. In their validation 

study, Fortson, Verbitsky-Savitz, Kopa, and Gleason (2012) try to replicate the experimental 

results from a national charter school evaluation using various non-experimental analyses. In 

their analysis, all three conditions for causal validity are present – the comparison group is 

restricted to the same set of districts as the treatment group (prescreened and local), and pretest 

scores are used to either conduct matching or to control for differences in pretest scores. The 

authors find that even when these conditions are in place, using a simple OLS regression analysis 

to control for baseline pretest scores does not replicate the experimental findings. However, 

propensity score matching and other statistical approaches, such as a difference-in-difference 

analysis, do produce impact estimates that are not statistically different from the causal 

benchmark. These findings suggest that a fourth condition for causal validity may be in order – 

that is, it is important to also use a rigorous analytical design and method that can properly 

eliminate or control for baseline differences in the outcome measure. 

 

While these recommendations are useful, there are still a few key gaps in the literature with 

respect to using NXDs for educational evaluation. The first is that previous validation studies 

have focused exclusively on non-experimental designs that make use of only one or two years of 

pretest data, such as the difference-in-difference (DD) design.
6
 The DD design evaluates the 

                                                        
5
 What we refer to as “prescreened” groups Cook and his colleagues call “intact” groups. 

6
 Shadish, Cook, and Campbell (2002) call this design a “non-equivalent comparison group design with pretest and 

posttest samples”. 
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impact of a program by looking at whether the treatment group deviates from its baseline mean 

by a greater amount than the comparison group (that is, whether pre-post gains are larger for the 

treatment group). Previous studies have shown the DD design can in some cases replicate the 

results of an experiment (Fortson et al., 2012), but more generally the design’s validity is subject 

to an important threat: larger pre-post gains for the treatment group may be due to a pre-existing 

difference in baseline trends between the treatment and comparison group. If so, then the impact 

findings from a DD design will be biased. Yet, with only 2-3 baseline time points, it is not 

possible to evaluate the plausibility of this threat or to control for it.  

 

If data are available for 4 or more baseline time points, then a comparative interrupted time 

series (CITS) design can be used to address these limitations.
7
 With a CITS design, program 

impacts are evaluated by looking at whether, in the follow-up period, the treatment group 

deviates from its baseline trend (baseline mean and slope) by a greater amount than the 

comparison group. The CITS design is a more rigorous design in theory, because it implicitly 

controls for differences between the treatment and comparison group with respect to their 

baseline outcome levels and growth. On the other hand, the CITS design has more stringent data 

requirements than the DD design: scores must be available for at least 4 time points before the 

intervention begins in order to estimate the baseline trend (the rationale for this requirement will 

be discussed later in this paper).
8
 While in some sectors this requirement poses a problem, in 

educational evaluation it is often the case that multiple consecutive years of test scores are 

available, especially at the school level, due to the No Child Left Behind Act (NCLB). NCLB, 

which was initiated in 2001, mandates that school-level test scores in math and reading be 

reported yearly for students in third to ninth grade, overall and for key demographic subgroups. 

Thus, the CITS design is a feasible NXD for evaluating school-level impacts.
9
 Given its greater 

rigor, the CITS design has the potential to reduce bias by a greater amount than the DD design, 

and its estimated impacts are more likely to be causally valid. Yet to our knowledge, there has 

not yet been a within-study comparison of the validity of the CITS design, whether in education 

research or in other settings.
10

  

 

Another gap in the validation literature is that the DD design and matching methods have been 

examined as two separate types of analysis. Matching methods are typically implemented by 

using propensity score matching (or some other method) to create a “matched” comparison 

group that looks similar to the treatment group, and then estimating the impact of the program by 

comparing the outcomes of the treatment and comparison group at follow-up (post-intervention). 

In contrast, the DD design is implemented by looking at whether gains over time for the 

treatment group are greater than gains for a comparison group that includes all available 

                                                        
7
 Shadish et al. (2002) call this design an interrupted time series design with comparison group. 

8 See Cook et al. (2008), Shadish et al. (2002) and Meyer (1995). 
9
 NCLB mandates that school-level test scores in math and reading must be reported yearly for students in third to 

ninth grade, overall and for key demographic subgroups. 
10

 In their review, Cook et al. (2008) mention that having multiple years of pretest data (as in a CITS design) is 

desirable and better than having only one or two years of pretest data. However, their review does not include any 

validation studies of the CITS design, probably because none have been conducted. 
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“untreated” schools. No matching is conducted to make the two groups more alike with respect 

to their baseline outcomes and characteristics, because the DD design implicitly controls for 

baseline differences in the outcome. Yet, in theory, we argue that there can also be benefits to 

using matching methods to select the comparison group for the DD (or CITS) design. As will be 

discussed later in this paper, an important threat to the validity of the DD (and CITS) design is 

that in the follow-up period, the treatment and comparison groups differ from each other in ways 

other than the receipt of the program – for example, if a policy shock affects one group but not 

the other. One way to mitigate such potential confounders is to make sure that the treatment and 

comparison groups used in the DD (or CITS) design have similar pre-intervention outcomes and 

characteristics. If the two groups are “matched” at baseline, then this increases the likelihood that 

the two groups will be subject the same policy shocks and respond to them in the same way 

during the follow-up period, thereby reducing the potential for bias. To our knowledge, no study 

has looked at the causal validity of a CITS or DD design where the comparison group has been 

matched on pre-intervention outcomes as a means of further strengthening the design. 

 

On the topic of matching methods, we see three other gaps in the literature. The first relates to 

the relative precision of alternate matching estimators. Understandably, the discussion of NXDs 

has focused on the causal validity of estimated impacts (or conversely, their “bias” relative to 

experimental estimates). However, the precision of impact estimates from NXDs – defined as the 

inverse of the variance of the impact estimate (standard error squared) – is also important. True 

impacts, if they exist and can be estimated, can only be detected if the impact estimate is 

sufficiently precise, so ideally an impact estimate should be both unbiased and precise. As noted 

earlier, previous reviews have shown that the choice of statistical method for matching matters 

little when it comes to bias reduction – what matters most are the groups being compared and the 

data that are available for controlling for between-group differences. However, not all statistical 

matching methods are equivalent when it comes to the precision of the resulting impact 

estimates. Some approaches may lead to greater precision than others, because they produce 

larger comparison groups.  This may be especially important in the context of a school-level 

impact evaluation in which sample sizes are small relative to a student-level impact evaluation.  

 

The second issue is whether non-experimental comparison groups should be chosen based on 

characteristics other than pretests. Earlier applications of matching methods have used “off the 

shelf” demographic characteristics as matching variables (ethnicity, socioeconomic status, etc.). 

However, the choice of these characteristics was largely driven by the fact that pretest scores 

were not available for matching purposes. If pretest scores are available, is it necessary to also 

match on demographics? In theory, matching on both pretests and demographic characteristics 

could further improve the comparability of the two groups. Indeed, a recent study by Steiner, 

Cook, Shadish, and Clark (2010) finds that matching on demographics and pretests leads to 

greater bias reduction than matching on pretests alone. However, we would argue that in some 

contexts, and most notably in school-level evaluations where samples are smaller, it may be 

difficult to find a comparison group that has both similar pretest scores and demographic 

characteristics. If so, then matching on both pretests and demographics could undermine the 
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similarity of the treatment and comparison group with respect to pretests, which is probably the 

most important criterion for causal validity. 

 

The third issue – which is especially relevant for educational evaluation – is whether NXD 

estimates are still valid when the comparison group is not “geographically local”. To meet this 

condition in educational evaluation, one would have to restrict the comparison group to the same 

set of districts as the treatment group. However, this may be difficult to do in practice, especially 

if the intervention being evaluated is a school-level reform. Such reforms are often implemented 

district-wide, which means that there are no “untreated” comparison schools in the same district. 

Even if the reform is not district-wide, schools chosen for the reform are typically characterized 

by some marker of poor performance (like low test scores), which makes them unusual if not 

unique relative to the untreated schools in the district. In this case, it would be inappropriate to 

limit the comparison group to schools in the same set of districts as the treatment schools.  

 

Accordingly, our goal in this paper is to extend the literature by addressing the following 

research questions: 

 

 Can the CITS and DD designs provide internally valid estimates of the impact of a school-

level intervention, even when it is not possible to use a geographically local comparison 

group?  

 How do the CITS design and the DD design compare with respect to bias reduction and 

precision?  

 Can the precision of impact estimates from the CITS and DD designs be improved without 

compromising causal validity, through the choice of matching method (and thus the resulting 

sample sizes)? 

 Is bias reduction stronger or weaker when both pretests and baseline demographic 

characteristics are used for matching as opposed to pretests only? 

 

To answer these questions, we conducted a validation study of the CITS and DD designs based 

on the federal Reading First program as implemented in a Midwestern state. The Reading First 

Program was established under the No Child Left Behind Act of 2001. The program is predicated 

on findings that high-quality reading instruction in the primary grades significantly reduces the 

number of students who experience difficulties in later years. Nationwide, the program 

distributed over $900 million to state and local education agencies for use in low-performing 

schools with well-conceived plans for improving the quality of reading instruction. The federal 

funding had to be used on reading curricula and teacher professional development activities that 

are consistent with scientifically-based reading research (Gamse, Jacob, Horst, Boulay, & Unlu, 

2008). 

 

The Midwestern state used in this paper is unique in that Reading First funds were allocated 

statewide and based on a rating system that was in large part subjective. This means that the 

school-level impact of Reading First can be estimated using a regression discontinuity (RD) 

design. Although RD designs are NXDs, they are considered a “silver standard” design in 
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program evaluation.
11

 When the conditions for a valid RD design are met, this design can be 

used to obtain internally valid estimates of program impacts. As will be shown in this paper, 

these conditions are all met in the example of Reading First. It will also be argued that the 

characteristics of the Reading First rating system – and the resulting relationship between these 

ratings and test scores – are such that the RD design also produces impact estimates that are 

generalizable to all Reading First schools, which is typically not the case with an RD design. In 

the case of Reading First, then, the RD estimates can be used as a “benchmark” for assessing the 

causal validity of corresponding CITS and DD results. The latter two NXDs can also be used to 

evaluate the intervention, because school-level test scores on state assessments are available for 

multiple years, both before and after Reading First was implemented in the state.  Since the state 

is relatively large, there is also a large pool of elementary schools from which to choose 

comparison groups.  

 

Importantly, our paper meets several requirements for a strong validation study. As noted 

elsewhere, one of the potential weaknesses of a validation study is that the causal benchmark is 

known, so there may be an incentive for researchers to keep trying new NX analyses until they 

find one that replicates the causal benchmark (Bloom, Michalopolous, & Hill, 2005). To prevent 

this from happening, we pre-specified our methods in a research proposal to the U.S. Department 

of Education. In addition, we were also able to replicate our analysis across multiple outcome 

measures, to see whether our conclusions hold across different follow-up years (first and second 

year of the intervention) and across different subject areas (reading scores and math scores).
12

  

 

This paper proceeds as follows. Section 2 describes the dataset and measures that are used to 

estimate the impact of Reading First on test scores. Section 3 presents impact estimates based on 

an RD design, and demonstrates that these findings can be used as a causal benchmark for 

validating the CITS and DD designs. Section 4 describes the analytical framework of the DD and 

CITS analyses, including an overview of these two designs, the process for selecting comparison 

schools, and the characteristics of these schools. Section 5 presents the estimated impact of 

Reading First based on the CITS and DD designs, and compares these results to the “benchmark” 

estimates from the RD design. Section 6 concludes with a discussion of the results and our 

recommendations. 

 

Throughout this paper, we will refer to the DD and CITS designs as “non-experimental” designs 

(NXD). However, it is worth noting that these designs are sometimes referred to as “quasi-

experimental” designs (QED). The distinction between non-experimental designs and quasi-

experimental designs was popularized by Shadish et al. (2002), as a way of emphasizing that 

                                                        
11

 The U.S. Department of Education now considers regression discontinuity designs “gold standard” research along 

with randomized experiments.(Clearinghouse Moves Past “Gold Standard”, Education Week, Oct. 20, 2010.  

http://www.edweek.org/ew/articles/2010/10/20/08wwc.h30.html?tkn=VONFXdkDm9RUdDyWUzY5E2nInbitQAu

v3nl0&cmp=clp-edweek .) The review by Cook et. al. (2008) also concludes that the RD design and experiments 

produce comparable impact estimates.  
12

 Even though reading achievement is the primary target of Reading First, validation studies can also examine 

impacts on outcomes that  might not be affected by the intervention (such as math), to see whether NXDs can 

replicate the “zero” impact.  

http://www.edweek.org/ew/articles/2010/10/20/08wwc.h30.html?tkn=VONFXdkDm9RUdDyWUzY5E2nInbitQAuv3nl0&cmp=clp-edweek
http://www.edweek.org/ew/articles/2010/10/20/08wwc.h30.html?tkn=VONFXdkDm9RUdDyWUzY5E2nInbitQAuv3nl0&cmp=clp-edweek
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some non-experimental designs are more rigorous than others: QEDs are designs that make use 

of a comparison group and pretests, while NXDs are designs that do not include these design 

elements. In principle this distinction is a useful one, but unfortunately, in recent years the label 

“quasi-experimental” has also been used to refer to weaker study designs. To avoid confusion, 

we will simply refer to the DD and CITS designs as non-experimental, but we note that they 

would be considered quasi-experimental in the classification system of Shadish et al. (2002).  

 

In this paper, we will also refer to the “counterfactual outcome” for a given study design. The 

counterfactual outcome is defined as what would have happened to the treatment group in the 

absence of the intervention. (In Reading First, for example, the counterfactual outcome is 

represented by the test scores that students in Reading First schools would have gotten had their 

school not received program funding.) The impact of a program is defined as the outcomes of 

program participants minus their counterfactual outcome. By extension, the rigor of a non-

experimental design depends on whether the comparison group accurately portrays the 

counterfactual outcome for the treatment group. As will be explained in this paper, how the 

counterfactual outcome is estimated depends on the type of study design that is used.  

 

Finally, it should be emphasized that this paper represents an especially strong application of the 

CITS and DD designs. As noted earlier, the CITS design can be implemented with a minimum of 

4 baseline time points, while the DD design can be implemented with only 1 time point. 

However, in our analysis, the number of baseline years used for each design exceeds these 

minima: we use 6 baseline time points for the CITS design and 3 time points for the DD design. 

This analytical decision was made because our goal is to examine the properties of each design 

under the most favorable conditions for that design. On the one hand, this may limit the 

generalizability of our findings, and especially the results for the DD design which is often 

implemented with only 1 baseline time point. On the other hand, our analysis provides a useful 

first step in gauging whether these two designs can provide causally valid results when data 

availability is optimal. In future work, we will examine whether our findings hold when fewer 

years of baseline data are used for each design. 

 

2 Data Sources and Measures 
 

In this paper, we use several data sources to estimate the impact of Reading First: 

 

 State assessment scores: Data on 3
rd

 grade reading scores (the outcome of interest
13

) are 

available at the school-level from the state’s department of education website. The third 

grade reading assessment used by the state is the Comprehensive Test of Basic Skills 

(CTBS/5), a nationally norm-referenced test administered each spring. Scores are scaled as 

normal curve equivalents (NCEs) and are available from Spring 1999 to Spring 2006.
14

 We 

                                                        
13

 Although Reading First also targets reading instruction in Grades 1-2, reading achievement in these earlier grades 

is not tested by the state. State test scores are the basis for the present analysis. 
14

 The state’s use of the reading assessment was discontinued in 2007 and replaced by another. A different 

assessment was also used prior to 1999. 
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also use data on 3
rd

 grade math test scores (in NCEs) as a secondary outcome. Even though 

reading achievement is the primary target of Reading First – and math is not supposed to be 

affected – we can examine whether the CITS and DD designs are also able to replicate the 

impact of Reading First on math scores. 

 

 Common Core of Data (CCD) and U.S. Census: To describe the samples and identify 

matched comparison schools, we use information on the characteristics of schools and 

districts. Information on school characteristics (enrollment, demographic characteristics, 

location, etc.) is obtained from the Common Core of Data (CCD) at the National Center for 

Education Statistics (NCES), for the 1998-1999 to 2005-2006 school years. We also use 

yearly child poverty rates by school district, for children 5-17 years of age, from the U.S. 

Census Bureau’s Small Area Income and Poverty Estimates (SAIPE). Poverty rates are 

available for 1999 to 2005.
15

  

 

 Reading First rating: For the RD analysis, we obtained data on the rating that was used to 

allocate RF funds in the state that we study. The rating assesses the “curricular” quality of 

schools’ application and its values range from 33 to 185. Ratings were provided by the 

Midwestern state.  

 

These data were used to create a panel (longitudinal) dataset for all elementary schools in the 

state. This dataset includes test scores and demographic information for 8 school years (1998-99 

to 2005-06). The implementation of Reading First began in 2004-05, so there are 6 years of pre-

intervention data (1998-99 to 2003-04) and two years of post-intervention data (2004-05 and 

2005-06).   

 

For the analysis, we restrict the dataset to elementary schools with complete test score data for 

all 8 years of the study period (six baseline year and two follow-up years). In total, 680 schools 

meet this requirement and are used in the analysis. Of these schools, 69 schools received 

Reading First funds and have complete test score data; these 69 schools comprise the treatment 

group for the present analysis.
16

  

 

3 The Regression Discontinuity Design as a Causal Benchmark 
 
In a typical validation study (such as the studies reviewed earlier), the “causal benchmark” for 

true program impacts is provided by a randomized experiment. The reasons for this choice 

should be obvious. Because a “coin flip” is used to determine who gets into the program, the 

observed and unobserved characteristics of the treatment and control groups should be the same 

in expectation before the intervention begins. Therefore, the control group’s mean outcomes can 

be used to measure the mean counterfactual outcome for the treatment group. The difference 

                                                        
15

 These data are measured by calendar year, not academic year. Calendar year 1999 is used for school year 1998-99, 

and so on.  
16 Although 74 schools received funding, 5 schools do not have test score data for all 8 school years in the study 

period (whether because they opened more recently or were closed).  
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between the treatment and comparison group’s mean future outcomes provides an internally 

valid estimate of the average program effect. For a given sample size, impact estimates from a 

randomized experiment are also more precise than most other study designs.  

 

In our validation study, however, the causal benchmark for the true impact is provided by an RD 

design, rather than a randomized experiment. When properly implemented, an RD design can 

provide estimates of program impacts as rigorous as those from a randomized experiment. On 

the other hand, readers familiar with the RD design will recall that, unlike an experiment, the 

internal validity of the RD design is not guaranteed – it must satisfy several conditions for its 

impact estimates to be internally valid. The generalizability of its impact estimates can also be 

limited in certain contexts, and these estimates are always less precise than those from a 

randomized experiment. Therefore, the RD design can provide a plausible causal benchmark for 

the true impact of a program, but it is also incumbent on us to demonstrate that it is a valid 

benchmark in the context of Reading First.  

 

In this section, we review the RD design and we present findings for the effect of Reading First 

based on this design. We then demonstrate that these impact estimates satisfy all necessary 

conditions for using them as the causal benchmark in our validation exercise.  

 

3.1 Impact Estimates from the RD Design 
 

Regression discontinuity designs – first introduced by Thistlethwaite and Campbell (1960) – can 

be a highly rigorous method for evaluating social programs.
17

  RD designs can be used in 

situations where candidates are selected for treatment (or not) based on whether their “score” on 

a numeric rating exceeds a designated threshold or cut-point. Candidates scoring above or below 

a certain threshold are selected for inclusion in the treatment group while candidates on the other 

side of the threshold constitute a comparison group. By properly controlling for the value of the 

rating variable in the regression analysis, one can account for any unobserved differences 

between the treatment and comparison group. This design is rigorous because – similar to an 

experiment – the process by which participants are assigned to the program is completely known. 

In a randomized experiment, assignment is based on a “coin flip”; in an RD design, assignment 

is based on whether individuals are above or below a known cut-off on a measurable criterion.  

 

The Reading First program can be evaluated using an RD design because in the Midwestern state 

that is the focus of this paper, Reading First funds were allocated to eligible schools with the 

highest quality applications based on a quantitative rating. Initial eligibility for the program was 

based on need, as evidenced by low reading proficiency scores and high poverty rates. After 

applications were received from eligible schools, an expert review panel was appointed by the 

                                                        
17 For an introduction to RD designs, see Cook (2008), Lee and Lemieux (2010), and Bloom (2012). For a 

discussion of these designs in the context of educational evaluation, see Jacob et al. (2012). 
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state’s Reading First team to review the applicants for funding and to give them a rating.
18 The 

ratings were based on the quality of the applicant’s proposed instructional strategy for improving 

reading instruction, and used on a standardized protocol.
19

 In total, 199 schools applied for 

Reading First funds and were rated (rating values range from 33 to 185). The 74 schools with the 

highest ratings were given Reading First funds, which is the number of schools that could be 

funded given the amount of money available to the state.  

 

Figures 3-1 and 3-2 demonstrate how the RD design can be used to estimate the impact of 

Reading First on reading score and math scores, respectively. These figures plot the relationship 

between schools’ score on their application for RF funds (the rating variable) and the average 3
rd

 

grade test scores of their students during a given follow-up year (the outcome of interest). The 

ratings in this figure have been centered at the cut-off score, so the cut-off is located at zero. 

Schools above the cut-off received Reading First funds, while schools below the cut-off did not. 

The RD design assumes that, in the absence of the program, the relationship between the 

assignment variable and test scores would be continuous. Therefore, if the program is effective, 

it will create a discontinuity in the relationship between the assignment variable and the outcome 

at the cut-off point. The size of this discontinuity – or the difference between treatment and 

comparison group outcomes at the cut-off – is the estimated impact of the program.
20

  

 

INSERT FIGURES 3-1 AND 3-2 ABOUT HERE 

 

Based on these figures, it does not appear as though Reading First improved test scores, because 

there is no appreciable discontinuity in scores at the cut-off.  We can formally estimate the size 

of the impact estimate – and test whether it is statistically different from zero – by fitting the 

following model: 

 

                             

 

                                                        
18 The members of this panel had advanced degrees and were knowledgeable in scientifically based reading 

research and the importance of explicit, systematic instructional strategies in phonemic awareness, phonics, fluency, 

vocabulary development and comprehension.  They also had collective expertise in professional development, 

leadership, assessment, curriculum, and teacher education.  Reviewers worked in three-member teams that reviewed 

and scored each application.  
19 Ratings were based on the following 9 criteria: (1) the program has been carefully reviewed; (2) the five 

components of reading instruction incorporate the five critical building blocks of effective reading instruction 

(phonemic awareness, decoding/word attack, reading fluency, vocabulary, and comprehension). (3) the program is 

based on sound principles of instructional design; (4) the program is valid and reliable; (5) the program employs a 

coherent instructional design; (6) content is organized around big ideas; (7) instructional materials contain explicit 

strategies; (8) instructional materials provide opportunities for teachers to scaffold instruction; (9) skills and 

concepts are intentionally and strategically integrated. 
20

 This application of the RD design represents a “sharp” RD design, because all schools complied with their 

treatment assignment (that is, all schools above the cut-off received funding, and none of the schools below the cut-

off received funding). With a sharp RD design, the discontinuity at the cut-off is an estimate of the treatment on the 

treated (TOT). In contrast, a “fuzzy” RD design is one where there is non-compliance (no-shows and crossovers). In 

this situation, the discontinuity at the cut-off is an estimate of the “intent to treat” (ITT). 
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where: 

 

    = Average 3
rd

 grade test score (reading or math) for school j 

in the spring of a follow-up year t. 

       = Dichotomous indicator for whether school j is a treatment 

school (=1 if school received RF funds; 0 if a non-RF 

school with a rating) 

         = Continuous variable for the rating assigned to schools’ 

application centered at the cut-off (= 0)  

 

In this model,    represents the estimated impact of the intervention in the follow-up year of 

interest.  

 

Table 3-1 presents the impact estimates from this model, scaled as effect sizes. Effect sizes are 

based on a standard deviation of 21.06, which by definition is the student-level standard 

deviation for scores in normal curve equivalents (NCEs).
 21

 The findings confirm that Reading 

First did not improve reading or math achievement. All impact estimates are small in magnitude 

(ranging from -0.058 to 0.057) and none of them are statistically significant (the smallest is 

0.434).  

 

INSERT TABLE 3-1 ABOUT HERE 

 

It is important to note that the lack of program impacts does not invalidate or weaken the RD 

results as a causal benchmark. In a validation study, whether or not the program was effective is 

irrelevant. The key question is whether the comparison group provides the right estimate of the 

counterfactual outcome (the outcome in the absence of treatment). In fact, rather than comparing 

impact estimates from different study designs, one could instead directly compare the outcomes 

of the experimental control group (the counterfactual) and the non-experimental comparison 

group (the counterfactual estimate).
22

 In practice, the outcomes of the treatment group are 

irrelevant and by extension, the actual size of the impact is also irrelevant (whether zero or 

otherwise). In this paper, we cannot directly compare counterfactual estimates (comparison 

groups) because the RD design and the DD and CITS design identify treatment effects 

                                                        
21

 We use the student-level standard deviation because Reading First aims to improve student achievement. Normal 

curve equivalents are defined as 50 + 21.06z, where z is the z-score for a student’s score on the test. A standard 

deviation of 21.06 is used for scaling the test scores because this has the following result (assuming test scores are 

normally distributed): (1) the NCE is 99 if the percentile rank of the raw score is 99; (2) the NCE is 50 if the 

percentile rank of the raw score is 50; the NCE  is 1 if the percentile rank of the raw score is 1. 
22

This strategy is used in Bloom et al. (2005) and Heckman, Ichimura, Smith, and Todd (1998); Heckman, Ichimura, 

and Todd (1997). If two impact estimates based on the same treatment group are equal, then by extension the two 

comparison groups must have the same mean outcomes. This can be shown mathematically. Let T be the average 

outcome for the treatment group, C1 the average outcome for the experimental control group, and C1 the average 

outcome for the non-experimental comparison group. The difference between the two impact estimates is = (T– C1) 

– (T– C2) = C2 – C1. 
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differently. However, the same logic holds – the size of the true impact is inconsequential. What 

matters is whether the RD design provides a better estimate of the counterfactual outcome than 

the other NX designs. Therefore, program effectiveness is not a necessary condition for a valid 

causal benchmark, but several other conditions do have to be satisfied, and we turn to them in the 

next section.  

 

3.2  Specification Tests on the Causal Benchmark 
 

An RD impact estimate must meet three conditions to serve as a causal benchmark.  It must be: 

(1) internally valid, (2) generalizable to all schools in the sample, and (3) sufficiently precise to 

provide an acceptable chance of detecting a non-zero impact if it exists.
23

 These three conditions 

– and the specification tests used to assess them in the context of Reading First – are discussed 

below. In summary, the results of these tests indicate that the RD impact estimates in Table 3-1 

satisfy all three conditions and that estimated impacts from the RD design can be used as a 

benchmark to study the causal validity of the DD and CITS designs. 

 

1) The RD impact estimates must be internally valid 

 
The causal validity of an RD design hinges on four important conditions, which are discussed 

below.
24

 The test results are summarized below, with more detailed findings presented in 

Appendix A. 

 

i. Nothing other than treatment status is discontinuous at the cut-point value of the RD rating 

(i.e. there are no other relevant ways in which observations on one side of the cut-point are 

treated differently from those on the other side).  

 

One way to test this condition is to estimate the “impact” of Reading First on variables that 

should not be affected by the program, such as the demographic characteristics of the student 

body and school-level test scores in the baseline period. The estimated impact of Reading First 

on these variables should be zero or not statistically significant. Accordingly, we examined the 

impact of Reading First on school characteristics that should be unaffected by the program, in the 

last baseline year, the first follow-up year and in the second follow-up year (See Appendix A). 

We find that Reading First did not have a statistically significant impact on these characteristics.  

 

ii. The rating variable cannot be caused by or influenced by the treatment. In other words, the 

rating variable is measured prior to the start of treatment or by a variable that can never 

change.  

 

                                                        
23

 Cook et al. (2008) discusses the requirements for a strong within-study comparison of experimental and non-

experimental estimates. We have adapted these requirements to using an RD design rather than an experimental 

design as the benchmark.  
24

 See Bloom (2012) and Jacob et al. (2012) for a more detailed discussion. 
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As discussed earlier, ratings were assigned by an independent panel of experts based on a 

standard set of criteria, and therefore there was no opportunity to manipulate the ratings. Our 

qualitative review of the scoring materials and the rating process has convinced us that the 

ratings were indeed based on the scoring rubrics. Ratings were assigned prior to the award of 

Reading First funds and could not have been influenced by the treatment or by political 

manipulation. Therefore, possible threats to validity leading to underestimates of program 

impacts – for example, that schools that received funds were somehow more disadvantaged, or 

that there was manipulation of ratings around the cut-off – are not plausible given the way in 

which the ratings were determined and funds were allocated.  

 

McCrary (2008) also proposes a formal test of whether the ratings were “manipulated”. This test 

examines whether the distribution of the ratings is “disrupted” at the cut-off value, which would 

suggest that some schools’ rating score was artificially raised so that they could just make the 

cut-off and get funding. The test is conducted by first creating a histogram of the density of the 

ratings, and then using a local linear regression on either side of the cut-off to estimate the 

discontinuity in the ratings density at the cut-off. Based on this test we do not find any evidence 

of manipulation.
25

 

 

iii. The cut-point is determined independently of the rating variable (i.e., it is exogenous) and 

assignment to treatment is entirely based on the candidate ratings and the cut-point.  

 

The cut-point is exogenous because it is based on the amount of available funding. After ratings 

were assigned, schools that applied for Reading First were ranked from highest to lowest based 

on their rating, along with the amount of funding requested (which was based on the size of the 

school).  Funding was awarded to the highest rated schools in rank order, until the available pool 

of funds was exhausted. Based on this funding algorithm, the 74 schools with the highest rating 

were awarded RF funding.
26

 The cut-off is equal to the rating at which funds were exhausted (the 

cut-point between the lowest-scoring winning school and the highest-scoring losing school is 

145).  

 

iv. The functional form representing the relationship between the rating variable and the 

outcome, is continuous throughout the analysis interval absent the treatment, and is 

specified correctly.  

 

                                                        
25

 The size of the discontinuity in the distribution of ratings at the cut-off is 0.736 (in logs), with a standard error of 

0.516. To run the test, one must choose a bin size for the histogram and a bandwidth for the local regression. 

McCrary proposes values based on a “rule of thumb”, but he stresses that these are only starting points, and that a 

more formal procedure should be used to determine the optimal bandwidth especially. Accordingly, we use the 

optimal bandwidth described in Imbens and Kalyanaraman (2009), which is 10 points on the rating scale; for the bin 

size, we use the default value proposed by McCrary (4.3 points). 
26 Although 74 schools received funding, 69 are used in the analysis because 5 schools do not have test score data 

for all baseline years. Using the RD design, estimated impacts for the 69 schools used in the analysis do not differ 

appreciably from impacts based on all 74 schools. 
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To estimate the impact of Reading First on student achievement, we use a simple linear RD 

model. We are confident that this is the correct functional form for several reasons. First, 

graphical inspection of the relationship between ratings and test scores clearly shows that it is 

linear and flat (Figures 3-1 and 3-2). Second, as a sensitivity test, we estimated impacts based on 

alternate function forms – allowing the relationship between the rating and test scores to be 

quadratic and cubic (see Appendix A). Impact estimates based on these alternate forms are not 

statistically significant and are similar in magnitude to the results based on a simple linear 

functional form. 

 

As a further specification test, the literature also recommends that impacts be estimated using 

only the subset of observations around the cut-off. The relationship between the rating variable 

and test scores is more likely to be linear around the cut-off, so impact estimates based on 

observations in this area are more likely to be correct. Accordingly, Figures 3-3 and 3-4 presents 

RD impact estimates for different bandwidths h around the cut-off, for impacts on reading and 

math test scores respectively. For all bandwidths – even those closest to the cut-off where the 

functional form is most likely to be linear – we see that the estimated impact of Reading First 

hovers around zero and is not statistically significant.  

 

INSERT FIGURES 3-3 AND 3-4 ABOUT HERE 

 

In summary, these sensitivity analyses indicate that the RD estimate meets all four conditions for 

is internally validity, and that the estimated impact of Reading First is not statistically significant 

and zero for all practical purposes.  

 

2) The RD impact estimates must be generalizable to all RF schools 

 

In addition to being causally valid, the RD design must measure the same causal quantity as the 

DD and CITS designs to which it will be compared. In an RD, the counterfactual outcome for the 

treatment group is represented by the predicted outcomes of the comparison group at the cut-off 

point. Therefore, strictly speaking, RD impact estimates represent the effect of the program for 

participants around the cut-off only (the “local” average treatment effect). In contrast, the DD 

and CITS designs provide an estimate of the average impact for all RF schools (the average 

treatment effect).  

 

Therefore, in order to use the RD as a benchmark, we must show that the RD estimates are 

generalizable to all schools. Given the results, this amounts to demonstrating that the Reading 

First had a “zero” impact not only for schools around the cut-off, but also for schools further 

away from the cut-off. We use two specification tests to assess whether impacts are 

heterogeneous across Reading First schools. 

 

The first test compares the ratings-test score slope on either side of the cut-off. If Reading First 

had somehow had an impact on RF schools further from the cut-off, then an increase in these 

schools’ test scores would make the slope for RF schools different (steeper) than the slope for 
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non-RF schools. As seen in Figures 3-1 and 3-2, however, the slope of the relationship between 

ratings and school-level test scores is the same on either side of the cut-off (and in fact, it is flat). 

A statistical test confirms that the difference between slopes in not statistically significant (see 

Appendix A). This indicates that Reading First did not affect the test scores of schools further 

away from the cut-off any more schools than around the cut-off.  

 

The second test of heterogeneous effects is to look at whether the estimated impact for all 

schools differs from the impact for schools around the cut-off.  As shown in Figures 3-3 and 3-4, 

the estimated impact is the same (“zero”) for both groups of schools. The stability of the impact 

results across subsamples provides further evidence that the program did not improve the test 

scores of any particular subgroup of schools. Therefore, we can be confident that the RD impact 

estimate is generalizable to all schools, and that it provides the same causal quantity as the DD 

and CITS designs (that is, the average treatment effect for all Reading First schools). 

 

3) The RD impact estimates must be sufficiently precise to detect policy relevant 

impacts 

 
As demonstrated elsewhere, estimates from the RD design have lower statistical precision than 

other study designs (Bloom, 2012; Schochet, 2008).
27

 In practice, the standard error of impact 

estimates is 2 to 4 times greater for an RD design than for a randomized experiment with the 

same sample size. As such, it is possible that Reading First did improve test scores by a policy-

relevant amount, but that these effects are not being detected because the precision of the 

estimated impact is too low.  

 

Fortunately, the context of Reading First provides a “best case” scenario for precision. First, the 

relationship between ratings and test scores is very simple in the case of Reading First, so we can 

use the most basic RD model to estimate the impact of Reading First, thereby maximizing 

precision. Second, our outcome (test scores) is close to being normally distributed, which also 

improves precision.
28

 Based on the standard errors in Table 1, the minimum detectable effect size 

– or the smallest true impact that can be detected with 80% power and an alpha level of 5% – 

ranges from 0.20 to 0.21.
29

 We argue that this level of precision is acceptable, since smaller true 

impacts would not be policy relevant. This is also the level of precision in many (if not most) 

school-level random assignment studies.  

 

4 The Difference-in-Difference Design and the Comparative 
Interrupted Time Series Design: Analytical Framework 

 

                                                        
27

 See Appendix B for further details on the MDES for the RD design, as well as the DD and CITS designs. 
28

 As discussed in Bloom (2012), the statistical precision of RD impact estimates decreases as the impact model 

becomes more complicated (i.e., if the relationship between ratings and the outcome is non-linear, or if there are 

heterogeneous effects). Precision also decreases as the outcome’s distribution departs from normality and 

approaches a uniform distribution. 
29

 The MDES is equal to 2.8 times the standard error in effect size. 
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Having established that the RD design provides a reliable causal benchmark for the true impact 

of Reading First, we now turn to the two non-experimental designs that are the focus of this 

paper: the comparative interrupted time series (CITS) design and the difference-in-difference 

(DD) design. As explained earlier, these two designs represent a trade-off between rigor and data 

requirements: the CITS design is more rigorous but it requires more years of baseline data (4 or 

more), while the DD design – which can be seen as a “simplification” of the CITS design – 

requires fewer years of baseline data but its impact estimates are potentially more biased. The 

key question here is whether a DD design can produce internally valid estimates, in the event 

that sufficient data are not available for using a CITS design. 

 

In this section, we begin by discussing how these two designs can be used to evaluate the impact 

of a school-level intervention such as Reading First. We then describe the comparison schools 

for these two designs – the process and methods used for selecting them, and their characteristics 

relative to Reading First schools. 

 

4.1 Overview of the DD and CITS Designs 
 

As noted earlier, the DD design evaluates the impact of a program by looking at whether – 

relative to the pre-intervention period – the treatment group makes greater subsequent gains than 

does the comparison group on the outcome of interest. This design has been used to evaluate a 

wide range of school-level education reforms, including the Talent Development program 

(Herlihy & Kemple, 2004; Kemple, Herlihy, & Smith, 2005), Project GRAD (Snipes, Holton, 

Doolittle, & Sztejnberg, 2006), and the First Things First program (Quint, Bloom, Black, & 

Stephens, 2005).  

 

Figure 4-1 demonstrates the DD design using the example of Reading First, based on 

hypothetical data. Here we assume that 3
rd

 grade reading scores are available for 3 baseline years 

and 2 follow-up years. To estimate program impacts, the first step is to determine the amount by 

which school’s average test scores change from baseline to follow-up (“change from baseline 

mean”). This change over time is estimated for both the treatment group (RF schools) and for 

comparison schools, for each follow-up year. The estimated impact of the program is then 

obtained as the change over time in the RF schools minus the change over time in the 

comparison schools. Mathematically, this is equivalent to estimating the difference in reading 

scores between RF schools and comparison schools at follow-up, and then subtracting out the 

difference between the two groups of schools at baseline. Thus, the design implicitly adjusts for 

any difference in baseline means between treatment and comparison schools.  

 

INSERT FIGURE 4-1 ABOUT HERE 

 

The rigor of the DD design (and any non-experimental design) hinges on whether its comparison 

group provides a valid estimate of the counterfactual outcome for the treatment group. In a DD 

design, the estimated counterfactual outcome is the comparison group’s change over time from 
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its baseline mean. In other words, we must assume that in the absence of the intervention, the 

treatment group would have made the same average gains (or losses) as the comparison group.  

 

An important (and credible) threat to this assumption is that treatment and comparison schools 

may have different “maturation” rates. In Figure 4-1, for example, the larger gains made by RF 

schools could actually be due to a pre-existing difference in the growth rates of treatment and 

comparison schools (as opposed to the impact of Reading First). Unfortunately, with less than 

four years of pretest data, it is almost impossible to determine the extent to which differential 

growth rates are a threat to causal validity.  

 

The comparative interrupted time series design (CITS) design addresses these concerns, by 

making use of multiple years of pretest data. The impact of a program is evaluated by looking at 

whether – once the program begins – the treatment group deviates from its pre-intervention trend 

by a greater amount than does the comparison group.  If so, then the program is considered 

effective.  The CITS design has more stringent data requirements than the DD design; in order to 

reliably estimate baseline trends, the CITS design requires pretest data for at least 4 time points 

before the intervention begins. For this reason, the CITS design has been less frequently used in 

program evaluation.
30

 However, due to the reporting requirements of No Child Left Behind, 

school-level test scores are now publically available on a yearly basis, which makes the CITS 

design eminently feasible for evaluating school-level interventions. Bloom (2003) provides a 

general discussion of interrupted time series designs – with and without comparison groups – in 

the context of education research. 

 

INSERT FIGURE 4-2 ABOUT HERE 

 

Figure 4-2 demonstrates, using hypothetical data, how the CITS design can be used to evaluate 

Reading First, assuming that 6 years of pretest data are available (the reading scores for the last 

three baseline years are the same as in Figure 4-1). The first step in a CITS design is to estimate 

the trend in 3
rd

 grade test scores for each school during the baseline period. The second step is to 

estimate the amount by which schools’ test scores deviate from their baseline trend in the follow-

up period (“deviations from baseline trend”). Average deviations from trend are obtained for 

both Reading First schools and comparison schools. Finally, the impact of the intervention is 

estimated as the difference between the deviation from trend in treatment schools and the 

deviation from trend in comparison schools. If the program is effective, then the deviation from 

trend for treatment schools will be greater than that for comparison schools.  

 

The CITS design has greater potential than the DD to provide valid inferences about program 

impacts, because it implicitly controls for differences between the “natural growth” rates of 

treatment and comparison schools. Figures 4-1 and 4-2 illustrate this point. In this hypothetical 

example, the DD design would incorrectly show that the program was effective. However, the 

                                                        
30

 It has been used to evaluate the Jobs Plus program (Bloom & Riccio, 2005), as well as No Child Left Behind (Dee 

& Jacob, 2011; Wong, Cook, & Steiner, 2011).  
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CITS design would reveal that in fact, the treatment and comparison schools are on different 

growth trajectories, and that gains made by the treatment schools during the follow-up period are 

actually due to its higher pre-intervention growth rate, and not to the effect of Reading First. 

 

The CITS design is also a stronger study design for estimating longer term impacts. By “longer 

term”, we mean impacts occurring in 2-3 years of follow-up, whereas “shorter-term” impacts are 

those in the first year of implementation. Being able to estimate longer term impacts is important 

in educational evaluation, because it can take several years for an intervention to show visible 

effects on student achievement. Yet, longer-term impacts are harder to estimate because they are 

based on projections further into the future. Obtaining accurate projections is especially 

complicated when the slope of the baseline trend is not flat. The steeper the baseline slope, the 

less credible are projections further into the follow-up period, and by extension, the more 

questionable are estimates of longer-term impacts (because it is likely to be difficult to sustain 

marked improvement for long periods of time).  

 

Following from this logic, the CITS design is a stronger design for causal attribution than the DD 

design because (1) it can account for differences in baseline trends if they exist, (2) it makes 

more reasonable projections about longer term outcomes and (3) it builds additional uncertainty 

about future projections (forecast error) into the standard errors of long-term impact estimates. 

Although there is a loss in precision from using a CITS design rather than a DD design – 

especially for projections that are further in time – the standard errors of impact estimates from 

the CITS design more accurately portray uncertainty about the future in contexts where 

outcomes were changing before the intervention began (which is almost always).
31

 On the other 

hand, there are also limits to how far projections can be made; even when using a CITS design. 

Impacts more than 3 years into the future should be viewed with extreme caution, because 

projections past this point become very unreliable.  

 

All things considered, the rigor of a non-experimental design can be viewed along a continuum 

defined by the number of years of available pretest data. With no pretest data at all, the validity 

of any NX impact estimate is not credible. With 1 to 2 years of baseline data, the causal validity 

of short-term impacts is questionable though credible. However, longer-term impacts should not 

be trusted because there is no known baseline trend from which to project outcomes far into the 

future. With 3 years of baseline data, the baseline mean is estimated with greater reliability and is 

less sensitive to policy shocks in any given year, which strengthens our ability to identify a 

credibly similar comparison group.  Also, even though pre-intervention trends cannot be 

formally modeled, it becomes possible to gauge (at least descriptively) whether the treatment and 

comparison group have similar baseline slopes. In this context, the causal validity of short-term 

impacts is relatively sound, and longer-term impacts can be estimated, but only if baseline trends 

are quite flat (since projections into the future are more credible and reliable when outcomes are 

stable). With at least 4 years of baseline data, the validity of short-term impacts is strongest 

because one can explicitly choose a comparison group with similar pre-intervention trends or 

                                                        
31

See Appendix B for technical details on the precision of the CITS and DD designs.  
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statistically control for existing differences in baseline trends. Moreover, because baseline trends 

can be formally modeled, outcomes can be projected further into the future – and longer-term 

impacts can be estimated – even when the baseline slope is not flat. Having multiple years of 

pretest data also makes it possible to appropriately build additional uncertainty about future 

projections into the standard errors of long-term impact estimates (through estimates of the 

corresponding “standard errors of forecast”).  

 

Though the CITS design is located at the favorable end of this continuum, the design is not 

without its limitations. In a CITS design, the comparison group’s deviation from its baseline 

trend provides an estimate of the counterfactual outcome for the treatment group. However, a 

potential threat to this assumption is that the treatment and comparison group are not subject to 

the same “policy events” occurring at the same time as the intervention being evaluated, such as 

another school reform initiative or massive staff turnover. If only one group of schools is subject 

to these additional events (whether treatment or comparison schools), then the comparison 

group’s deviation from its trend will not provide the right counterfactual outcome for the 

treatment group, and the estimated impact of the program will be biased.
32

  

 

Differential policy shocks are a threat to validity for both the DD and CITS designs. As argued 

by Cook and his colleagues (2008), this threat can be mitigated by choosing comparison schools 

that are “local” and that have similar pretest scores. Strictly speaking, it is not necessary for the 

treatment and comparison groups to have similar pretest means, because the DD and CITS 

designs implicitly adjust for pre-existing differences.
33

 Indeed, as mentioned earlier, previous 

validation studies have not taken the extra step of finding “matched” comparison schools for the 

DD design (e.g., Fortson et al., 2012). However, if schools have similar means and trends at 

baseline, then this increases the likelihood that they will be subject to the same types of policy 

shocks (and have similar responses to them) in the follow-up period. In other words, the 

comparison group will have greater “credibility” or “face validity” as the source of 

counterfactual outcomes, hence the importance of strengthening the DD and CITS designs by 

carefully (and thoughtfully) selecting comparison schools. This process is discussed in the next 

section. 

 

4.2 Selection of Comparison Groups 
 

One of the research questions of this paper is whether – in the context of the DD and CITS 

designs – some comparison group selections methods are superior to others with respect to bias 

                                                        
32 For example, one can imagine a situation in which Reading First schools simultaneously implemented 

comprehensive school reform X in the follow-up period. This is a plausible scenario, because RF schools might be 

more proactive about school improvement than other schools. In this situation, the comparison group’s deviation 

from trend or mean in the follow-up period will not accurately portray the deviation that Reading First schools 

would have experienced in the absence of the Reading First. Specifically, comparison schools did not implement 

either the comprehensive school reform or Reading First; therefore, a comparison of Reading First and comparison 

schools will provide an estimate of both RF and the other school reform, rather than just the effect of Reading First.  
33 The DD design implicitly controls for baseline differences in mean scores, while the CITS design also controls for 

any differences in baseline trends. 
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reduction and/or precision gain. As noted elsewhere in this paper, there are many different 

strategies and methods for choosing comparison schools, some of which may provide a better 

representation of counterfactual outcomes than others (smaller bias). Similarly, some selection 

strategies yield larger comparison groups than others and accordingly will produce more precise 

impact estimates (greater precision). Therefore, in this paper we use several methods for 

selecting comparing groups, with the goal of comparing their bias reduction and precision gain.  

 

A. Prescreened Groups 

 

As argued by Cook et al. (2008), comparison groups are more likely to provide the right 

counterfactual outcome when they are somehow “prescreened” for program participation. For 

example, a convincing comparison group should meet the geographical or needs-based 

conditions for participating in the intervention (prescreened for eligibility), or have taken the 

further step of submitting their name for consideration (prescreened for motivation). Narrowing 

the comparison pool based on ability, motivation, or some other known selection criterion is a 

way of simulating the selection process by which treatment schools came to be participants, 

which is important for producing a credible comparison group. 

 

Accordingly, our first comparison group consists of schools that are located in districts eligible 

for Reading First funds. To be eligible, schools had to meet several criteria both at the district-

level and at the school-level. In terms of district-level requirements, a school had to be located in 

a Local Education Agencies (LEA) that had at least one school with more than 50% of students 

reading below proficiency in 4th grade; a school’s LEA also had to fall within one of three pre-

specified categories for school improvement.
34

 In terms of the school-level eligibility 

requirements, schools themselves had to be among those in their district with the highest 

proportion of low-income students; have 50% or more students below “proficient” on the 4
th

 

grade state reading assessment; and receive Title I funds.  

 

Unfortunately, there are constraints on our ability to exactly identify eligible schools. We know 

which districts (LEAs) were eligible for Reading First, but we cannot identify exactly which 

schools within those districts were eligible. Therefore,  our “eligible” group includes all schools 

in eligible districts – for a total 419 comparison schools spread across 79 eligible school districts 

– rather than eligible schools. The fact that we are unable identify eligible schools may 

compromise this group’s credibility as a source of counterfactual outcomes, because the 

“eligible” group could include schools that were in fact not eligible to apply (or in other words, 

schools that are higher achieving than Reading First schools).  

 

                                                        
34

 The three categories are: (1) The LEA has jurisdiction over a geographic area that includes an area designated as 

an empowerment zone (EZ) or an enterprise community (EC); (2) the LEA has jurisdiction over a significant 

number or percentage of schools that are identified for school improvement under section 1116(b) of Title I of the 

ESEA; or (3) the LEA has the highest number or percentage of children in the state who are counted by the USDOE 

under section 1124(c) of Title I of the ESEA. In total, 103 districts in our Midwestern state were eligible for Reading 

First funds. 
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We use two strategies to create a more credible comparison group for RF schools. First, as an 

alternative comparison group, we use the 99 schools that applied for Reading First funds but did 

not receive funds. By definition, these schools met all school-level and district-level eligibility 

criteria, but in addition, similar to the RF schools (the treatment group) they also had the 

motivation and resources to apply. These non-winning applicants are the “Non-RF group” in the 

RD design in Section 3.  

 

As a second strategy for enhancing the credibility of the comparison groups, we use statistical 

matching methods to identify schools – among the “eligible” group – that are similar to the RF 

schools based on pretests and other school-level eligibility criteria (the percent of low-income 

children, and Title I status). In real-world applications, information on which schools applied for 

a program is not always known or relevant, so matching may be the only option for creating a 

credible comparison group. The creation of “matched” comparison sets is described in the next 

section. 

 

B. Matched Groups 

 
The creation of matched comparison groups entails three types of decisions. The first is the pool 

of candidates from which the comparison group is to be selected (comparison pool). The second 

is the set of characteristics on which to match schools (matching characteristics). The third is the 

statistical method used to select comparison schools (matching method). We created several 

comparison school sets based on different combinations of these factors, as described in greater 

detail below. 

 

Comparison Pool 

 

For the candidate pool for matching, we use the already-defined group of 419 schools located in 

districts that are eligible to apply for Reading First funds. Matching is undertaken among the 

pool of schools in eligible districts (rather than among the 99 applicant schools), because some 

matching methods require a relatively large sample size; therefore, it is technically preferable to 

use the larger “eligible” pool as the group from which to select comparisons.  

 

With respect to the matching exercise itself, Cook et al. (2008) as well as others have 

emphasized the importance of using comparisons that are geographically local.
35

 In the case of 

Reading First, this would entail further restricting the comparison pool to schools in the same set 

of districts as the RF schools. In our study, taking this step would violate one of the conditions 

for a strong validation study. As discussed in Section 2, the RD design and the DD/CITS designs 

must provide impact estimates for the same target population, and therefore the comparability of 

the RD control group and the DD/CITS comparison groups is essential. If the candidate pool 

were restricted to schools in the same districts as the RF schools, then all comparison schools 

                                                        
35

 For example, see Heckman and Smith (1999), Heckman, Lalonde, and Smith (1999), and Heckman, Ichimura and 

Todd (1997). 
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(100 percent) used in the DD and CITS analysis would be located in districts that received RF 

funds, by definition. In contrast, only 59 percent of control schools in the RD design (those with 

a rating below the cut-off) are located in a district that received RF funds. As a result, if the 

comparison pool was strictly “local”, then the RD and DD/CITS designs would be based on 

comparison groups with different compositions. However, by relaxing the requirement that 

comparison schools be “local”, the comparison group for the DD/CITS designs will include 

schools in districts that did not receive RF funds, just like the RD control group.
36

  

 

Although our inability to use a “local” comparison group is counter to conventional wisdom on 

“best practices”, it does afford an opportunity to examine whether using geographically local 

comparisons is a necessary condition for the causal validity of the DD and CITS designs. This is 

a relevant question in educational evaluation, because using comparisons in the same districts as 

the treatment schools may not always be feasible or appropriate. A pertinent example is when 

there is spillover of reform components to other schools within the district. In this situation, 

comparing treatment schools to other schools in their district would be biased downwards, in 

which case it may be preferable to match the treatment schools to comparison schools located 

outside of the district. Although using comparison schools in the same districts is best where 

appropriate, it is also important to consider whether another option (i.e., outside of district, or a 

mix of within and outside as in the case of Reading First) might be more suitable given the 

characteristics of the intervention.  

 

Characteristics Used for Matching  

 

The primary characteristic used for matching RF schools to comparison schools are the 3
rd

 grade 

test scores of schools during the pre-intervention period. Pretests are strong predictors of 

outcomes in the follow-up period, so matching on school-level pretest scores (and where possible 

their baseline trends) increases the credibility of comparison schools as a counterfactual outcome 

for the treatment schools. For the analysis of impacts on reading achievement, we use reading 

test scores in the baseline period to identify “matched” comparison schools; similarly, for 

evaluating impacts on math achievement, we use math pretest scores to identify comparison 

schools. 

 

In addition to pretests, we examine whether there is any benefit to also matching on other school 

characteristics like demographics. Specifically, we tried matching on test scores plus the 

following 12 school characteristics: the location of the school (rural or urban), total school 

enrollment, 3
rd

 grade enrollment, the percentage of students who receive free or reduced price 

lunch, the racial-ethnic composition of the school (percentage of students who are white, black, 

Hispanic, Asian, or other), the percentage of 3
rd

 grade students who are girls, the pupil-teacher 

ratio, and child poverty rates for the district. These characteristics were chosen because they have 

been used in the past to predict test scores. Matching on these characteristics may improve the 

                                                        
36

For example, among the comparison groups used in this analysis, the percentage of schools located in a district 

that did not received RF funds ranges from 48 percent to 64 percent. 
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comparability of the treatment and comparison schools, and further reduce bias, because schools’ 

eligibility for Reading First funds was partly based on characteristics like the percentage of low-

income students.  

 

The number of years of baseline data used for matching depends on the design. For the CITS 

design, we use all 6 pre-intervention years of test scores and demographic data for matching 

(Spring 1999 to 2004) for matching. For the DD design, we use the 3 most recent pre-

intervention years (Spring 2002 to 2004). Recall that the CITS design requires only 4 data points 

and the DD design requires only 1 baseline point, so again we want to emphasize that our 

analysis represents a strong application of these two study designs. This is especially true for the 

DD design: as discussed earlier, using more baseline data points (and especially going from 1 

data point to 3 data points) considerably strengthens the rigor of the analysis.  

 

The next step in our analysis is to create a propensity score based on the matching 

characteristics. Because several characteristics and multiple years of data are used for matching, 

we need to collapse these variables into an overall index of “similarity” to make the process of 

matching more tractable. Several one-dimensional indices have been proposed – such as the 

Mahalanobis distance and the Euclidian distance – but in our analysis we use the propensity 

score method because it is the most common (Rosenbaum & Rubin, 1983).  

 

The propensity score is calculated by fitting the following logistic regression model to a dataset 

that includes Reading First schools and schools in the “eligible” group (the candidate pool used 

for matching):
37

 

 

                         

    

    

         

  

   

    

    

    

 

 

Where: 

 

       = Dichotomous indicator for whether school j is a treatment 

school (=1 if treatment school; 0 if a school in the 

comparison pool) 

       = School-level test score in Year t (reading scores to create 

comparison groups for impacts on reading; math scores 

for impacts on math) 

    = School characteristic S in Year t (12 characteristics) 

   = Random error term for school j  

 

                                                        
37

 This regression is estimated on a “flattened” dataset – i.e., with one observation per school. Time-varying 

characteristics are expressed as multiple variables. For example, there is one test score variable per academic year 

(i.e., READ1999, READ2000,etc.) and one value for each school characteristic per school year (e.g., 

ENROLLMENT1999, ENROLLMENT2000, etc.). 
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The estimated coefficients from this logistic regression represent the relationship between school 

baseline test scores and characteristics and the log odds of being in the treatment group. They 

can be used to obtain the predicted probability that a school will be in the treatment group (i.e. 

receive RF funds) given its characteristics. This predicted probability is defined as the propensity 

score. Viewed otherwise, the propensity score is simply a weighted composite of test scores and 

school characteristics, where the weight for a given characteristic is proportional to its ability to 

predict treatment status.
38

 Importantly, the difference between schools’ propensity scores 

provides a measure of their “dissimilarity”.   

 

We estimate several sets of propensity scores for our analysis, based on different combinations 

of matching covariates and years of baseline data. For the CITS design, we use a propensity 

score based on all 6 years of pre-intervention data (t=1999 to 2004). For the DD design, we use 

only 3 pre-intervention years of test scores and demographic data (t=2002 to 2004). For each 

design, we estimate two sets of propensity scores: (a) one that includes test scores only and (b) 

one based on test scores and other baseline school characteristics.
39

 We also estimate separate 

propensity scores for math and reading. In total, we use 8 sets of propensity scores, defined by 

number of year of baseline data (6 or 3), matching characteristic (test scores or test score plus 

demographics), and subject matter (reading scores or math scores).  

 

These propensity scores are then used as the metric for choosing comparison schools that are 

most “similar” to the RF schools. The algorithms (matching methods) used to select schools are 

described in the next section.
 
In practice, we use the logit of the propensity score for matching, as 

recommended in the literature.
40

  

 

Matching Methods 

 

As mentioned in the introduction, previous reviews have concluded that the statistical method 

used to select comparison schools matters little in terms of bias reduction. However, the choice 

of matching method does affect the number of comparison schools selected, and therefore the 

precision of impact estimates. In school-level impact evaluations – which typically have few 

                                                        
38

 An alternative to matching on the propensity score is to match directly on schools’ baseline mean test score and 

the slope of their baseline scores, using multi-dimensional matching. We conducted this analysis as a sensitivity 

check. The results from this analysis produce similar results (see Appendix F). However, the propensity score 

approach is easier to execute in practice, which is why it is the focus of our paper. 
39

 Some schools do not have complete data on all of these school characteristics. We therefore impute these 

characteristics using a “dummy variable” approach (Allison, 2001). The missing value is imputed using a constant, 

and for each characteristic we create a dichotomous indicator for whether a data point is imputed (=1 if imputed, 0 

otherwise). In the propensity score regression, we then include both the imputed characteristic and the missing data 

dichotomous indicator for that characteristic. In this way, “missingness” contributes to information determining 

probability of treatment assignment (Hansen, 2004). 
40

 The logit transformation is used for three reasons (Rubin, 2001). Because the logit transformation makes the 

propensity score linear, it is more relevant for assessing the results of linear modeling adjustments. Second, linear 

propensity scores tend to yield distributions with more similar variances and symmetry. Third, linear propensity 

scores are easier to relate to benchmarks in the literature on adjustments for covariates, which are based on linearity 

assumptions. 
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units – maximizing the sample size may be an important consideration. Therefore, we create 

comparison school sets using matching methods that differ with respect to the number of 

comparison schools selected.
41

 

 

The first selection method that we examine – and the one that is most popular in evaluation 

research – is nearest neighbor matching, also called “one-to-one” matching. This method 

chooses the most similar comparison school for each treatment school, based on the propensity 

score. Matching is conducted with replacement, which means that a given comparison school can 

be chosen as the “best” match for more than one treatment school. In this way, each treatment 

school is matched to the school that is most similar to it. The advantage of this type of matching 

is that it minimizes bias. Its disadvantage is that of all selection methods examined in this paper, 

it yields the smallest comparison group: assuming that there are n treatment schools, then there 

will be at most n unique comparison schools and perhaps far less than that, since a given 

comparison school can be matched to more than one treatment school.  

 

For this reason, we also examine two selection approaches that yield larger comparison groups. 

These methods increase the sample size by “relaxing” some of the constraints imposed by using 

one-to-one matching with replacement. However, in doing so, these methods also introduce 

greater risk that impact estimates will be biased. Therefore, the question of interest is whether 

these alternative selection methods can increase the precision of impact estimates without 

compromising their causal validity.  

 

The first alternative is to conduct one-to-one matching without replacement. In this variant of the 

nearest neighbor approach, a given comparison school can be matched to only one treatment 

school.
42

 Therefore, if there are n treatment schools, then there will also be n unique comparison 

schools. When matching without replacement, two different approaches can be used. The first is 

to match each treatment school, one at a time, to its nearest neighbor among the remaining 

schools in the comparison pool at that point. There are several problems with this approach. The 

first is that a treatment school matched later in the process could end up with a poor match, 

which could reduce the overall balance between the treatment and comparison group. Second, 

the resulting comparison pool (and its quality) depends on the order in which treatment schools 

are matched. Therefore, when matching without replacement, a better approach is to use optimal 

nearest neighbor matching instead (Rosenbaum, 1989). When using an optimal algorithm, the 

goal is to find a comparison group of size n that minimizes the total distance between treatment 

and comparison schools, as opposed to the distance between each individual treatment-

comparison pair. By this token, the optimal approach reduces the extent to which bias increases 

when comparison schools are selected without replacement. Moreover, with optimal matching, 

                                                        
41

 Methods not examined in this paper, for example, are kernel and local linear matching (Diaz & Handa, 2006) and 

full matching (Hansen, 2004). 
42

 In contrast, one-to-one matching with replacement is sometimes called greedy nearest neighbor matching. 
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the order in which treatment schools are matched is irrelevant.
43

 This is the approach used in our 

analysis when matching without replacement. 

 

The second alternative for increasing the size of the comparison group is to use radius matching, 

also known as “one-to-many” or “caliper” matching. In this approach, each treatment school is 

matched to all “suitable” comparison schools, defined as all schools within a given distance (or 

radius) of the treatment school as measured by the propensity score. Radius matching is 

conducted with replacement (a comparison school can be matched to more than one treatment 

school). The advantage of this method is that the size of the comparison group is larger than that 

for one-to-one matching, thus impact estimates are more precise. However, if the radius is too 

wide, then greater precision will come at the cost of less “suitable” comparison schools, which 

could introduce bias into the impact estimate.  

 

The challenge is finding the optimal radius – one that maximizes the sample size without 

compromising the validity of the comparison group as a source of estimates of the counterfactual 

outcome. Rough guidelines for the radius exist in the literature. Cochran and Rubin  (1973) 

recommend a radius of 0.25 standard deviations (SD) on the propensity score as being 

sufficiently small to eliminate bias.  

 

However, when pretest scores are available for two or more baseline years (as they are for the 

CITS design and in some cases the DD design), we propose that a more rigorous method can be 

used to determine the optimal radius.
44

 Specifically, we can choose the radius based on the 

program’s “impact” in the last baseline year. Because the intervention has not yet started at this 

point in time, we know that Reading First’s true impact in the last baseline year is zero, so we 

can use this as a benchmark for choosing the right radius. As the radius for matching expands, 

the estimate of this impact may deviate from zero because we are selecting “less similar” 

schools, but the precision of the impact estimate will increase as we include more schools in the 

comparison group. The goal is to choose the largest radius that still provides an estimated impact 

that does not differ statistically from zero.  

 

We can use the mean squared error (MSE) as a metric for capturing the trade-off between bias 

and precision as the radius expands. The MSE for radius R is defined as follows: 

   

    
     

           
 

 

The first term,    
    is the square of the estimated impact in the last baseline year based on a 

comparison group selected using radius R. Because the true impact in the last baseline year is 

                                                        
43

 In contrast to the “optimal” algorithm, the first approach (where each treatment school is matched one at a time) is 

sometimes referred to as a “greedy” matching algorithm. 
44 We are not aware of this method having been used in other studies. 
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zero, the first term    
   is also the squared bias of the estimated impact in the last baseline 

year.
45

 The second term measures the variance of the estimate. Assuming that there are multiple 

“good” matches for each comparison school, the MSE should initially decrease as the radius 

expands (since the variance will decrease without increasing bias). Then at some point, the MSE 

will start to increase as “bad” matches are chosen and bias is introduced into the estimates. Thus, 

the MSE is a useful measure for capturing the trade-off between bias and precision when 

selecting a radius.
46

  

 

In practice, the optimal radius (and the final comparison group) can be determined by following 

these steps:  

(1) The propensity score is calculated using pre-intervention data excluding the last baseline 

year (the latter being reserved for impact estimation in the next step);
47

  

(2) Then for different values of radius R: 

a. Each RF school is matched to all comparison schools within radius R, based on 

the propensity score from Step 1.
48

 

b. The impact in the last baseline year (which should be zero) is then estimated 

using the resulting comparison schools,
49

 and the MSE for radius R is calculated 

based on the estimated impact and its standard error. 

(3) The “optimal” radius can then be determined – it is defined as the radius with the smallest 

MSE. In our analysis, the optimal radius ranges from 0.08 to 0.21 SD, depending on the 

study design and matching characteristics (see Table 4-1).
50

  

(4) Finally, the optimal radius is used to choose the final comparison group. Specifically, the 

propensity score is re-estimated using all years of baseline data
51

 and then each RF 

school is matched to all comparison schools whose propensity score is within the optimal 

radius.  

 

A limitation of the MSE, and by extension of this approach for determining the optimal radius, is 

that in practice it must be calculated using the estimated bias rather than the true bias, because 

the latter is unknown. The estimated bias is equal true bias plus random sampling error arising 

from the fact that the bias itself is an estimated quantity. The problem is that these two 

                                                        
45

The bias of      is equal to      minus the true impact of zero.  
46

 In its most general form, the estimated MSE is defined as: 

               
 
          

where    is the true value of the parameter of interest and     is its estimate.  
47

 This means that in this step, 5 baseline data points are used to estimate the propensity score for the CITS design 

and 2 baseline data points are used for the DD design. 
48 For RF schools for which there is no match within radius R, we relax the criterion and simply select their nearest 

neighbor, in order to ensure that all schools have a match.  
49

 Impacts are estimated based on a variant of the CITS and DD models shown in Section 5.1. 
50

All optimal radii are below 0.25 SD, which is the maximum recommended in this literature (Cochran & Rubin, 

1973). The standard deviation used to define the radius is the school-level standard deviation of the logit of the 

propensity score for all treatment schools and eligible comparison schools in the matching pool; we use the school-

level SD because it is the unit of analysis for matching. 
51

 6 years of baseline data for the CITS design and the 3 most recent baseline years for the DD design. 
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components behave differently as the radius widens: true bias increases, while random sampling 

error decreases because the number of comparison schools, and the sample size, is getting larger. 

Consequently, as the radius widens, the estimated bias can decrease even when true bias is 

increasing. This means that the “optimal” radius – which is chosen based on the estimated bias – 

will be larger than the optimal radius that would have been chosen based on the true bias (had it 

been known). Stated otherwise, the “optimal” radius could in fact be too wide. Despite these 

limitations, we believe that the MSE is the best approach available to us for selecting the radius, 

because it is a data-driven method rather than an ad-hoc rule.  

 

C. Summary 

 

Table 4-1 summarizes the comparison sets used in the analysis of impacts on reading and math 

scores. These sets can be grouped into three categories:  

 

 “Prescreened” groups of comparison schools that are not matched but that resemble the RF 

schools with respect to either geography (all non-RF schools in the state), eligibility (all 

non-RF schools in eligible districts), or motivation (schools that applied for Reading First 

funds but did not win);  

 

 Matched comparison sets for the CITS analysis (created by matching on a propensity score 

calculated from 6 years of baseline data);  

 

 Matched comparison sets for the DD analysis (created by matching on a propensity score 

calculated from 3 years of baseline data).  

 

 

INSERT TABLE 4-1 ABOUT HERE 

 

As explained earlier, matched comparison groups were chosen from the “eligible” pool based on 

different selection methods and matching characteristics, as a means of further improving the 

comparison schools as the source of counterfactual outcomes. The first matched group of schools 

is chosen based on nearest neighbor method with replacement, the second using nearest neighbor 

matching without replacement (based on an optimizing algorithm), and the third using the radius 

method. All three sets are matched using a propensity score calculated from pretests only. The 

fourth comparison set uses radius matching, but matching is based on a propensity score 

calculated from pretests plus baseline demographics. Impact estimates based on the latter 

comparison group will be compared to those from the third group (radius matching based on 

pretests only) to examine whether also matching on demographic characteristics leads to greater 

bias reduction. We focus on radius matching for this comparison, because this method yields the 

largest sample and therefore the most reliable comparison of bias reduction.
52

  

 

                                                        
52

 See Appendix C for tables showing the amount of overlap between schools in these sets. 
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Two other issues are worth highlighting. First, among the “prescreened” groups, we include all 

non-RF schools in the state as a comparison group. This group is least likely to provide the right 

counterfactual outcome, because some schools in the state were not even eligible for Reading 

First funds. However, we still include them as a comparison group in this paper, in order to 

examine the validity of the DD and CITS designs when no “prescreening” or matching is 

undertaken to improve the credibility of the comparison pool. Second, the CITS and DD 

comparison sets are matched using more years of baseline data than is typical for these designs 

(especially the DD design, which is often implemented with only 1 year of baseline data). 

Therefore, they represent especially strong applications of these designs. 

 

4.3 Characteristics of the Comparison Groups 
 

Having chosen several viable comparison groups, the next step is to gauge their similarity to 

Reading First schools (the treatment group) prior to the start of the intervention, with respect to 

baseline test scores and demographic characteristics. As explained earlier, strictly speaking the 

treatment and comparison group do not need to have similar baseline test scores before the 

intervention begins, because differences in test scores and slopes are controlled for by the 

analysis model. However, similar pretest scores – and if possible, similar demographic 

characteristics – do give greater credibility to the comparison group as the basis for estimating 

counterfactual outcomes in the follow-up period. For the purposes of this discussion, we will 

focus on the comparison groups used to estimate impacts on reading achievement, since the 

pattern of results for math is similar (see Appendix C).  

 

Accordingly, Tables 4-2 to 4-4 present the characteristics of the comparison groups used in the 

reading analysis. In these tables, statistical tests of the difference between RF schools and other 

groups are not shown, for two reasons. First, the precision of the estimated difference varies 

across comparison groups – for a difference of given magnitude, comparison groups with more 

schools are more likely to be deemed statistically different from RF schools. Second, our goal is 

to assess the relative similarity of groups, so the statistical significance of differences is less 

relevant than the size of the observed differences and ultimately the size of the estimated bias. To 

this end, the tables present (in parentheses) the difference between RF schools and other groups 

as a standardized mean difference or effect size. These effect sizes are based on the school-level 

standard deviation for all schools in RF-eligible districts (69 RF schools plus the 419 non-RF 

schools in the eligible comparison pool) in the last baseline year.
53

 As a rule of thumb in 

propensity score matching, it has been suggested that treatment and comparison groups should 

differ by not more than 0.25 SD on key characteristics (Ho, Imai, King, & Stuart, 2007),  so 

values greater than this threshold are flagged in the tables (“X”).  

                                                        
53

 See Section 4.2 for a discussion of the eligibility requirements.  We use the school-level standard deviation (rather 

than the student-level standard deviation) because in the matching literature, standardized mean differences are 

gauged based on the SD for the unit of observation (in this case schools). We use the standard deviation for all 

schools in eligible districts because it constitutes the largest relevant pool of schools. We use characteristics in the 

last baseline year because outcomes are not yet affected by the intervention at this point in time, and matching will 

be based on baseline characteristics. 
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INSERT TABLE 4-2 ABOUT HERE 

 

Table 4-2 presents the characteristics of the three prescreened comparison groups relative to the 

characteristics of RF schools (the treatment group). As expected given the eligibility 

requirements, RF schools are much lower performing than other schools in the state (effect size 

difference = 0.70 for reading test scores in the last baseline year). Yet, RF schools are also lower 

performing than schools in districts that did meet the eligibility criteria (effect size difference = 

0.53), which indicates that schools that were motivated to apply for RF funds had the lowest test 

scores among those eligible. For this reason, RF schools are most similar to the “applicant” 

group in terms of reading achievement – the effect size difference in pretest scores for this group 

is 0.05. On the other hand, RF schools and the “applicant” group are dissimilar with respect to 

demographic characteristics; effect size differences in racial-ethnic composition, enrollment, and 

poverty are larger than 0.25.  

 

INSERT TABLES 4-3 AND 4-4 ABOUT HERE 

 

Table 4-3 and 4-4 present the characteristics of the matched comparison groups chosen from the 

“eligible” group. We see that all matched comparison groups are reasonably similar to RF 

schools with respect to the baseline slope in test scores, as well as demographic characteristics. 

Importantly, effect size differences with respect to the propensity score are small in magnitude, 

which indicates that the matching process has been properly executed. However, in terms of test 

score levels in the last baseline year, the comparability of the matched sets is more mixed. We 

note the following patterns across Tables 4-3 and 4-4:  

 

 Selection methods (“nearest neighbor” vs. “radius”): Among matching methods, the 

nearest neighbor method produces the most similar comparison groups with respect to 

reading scores in the last baseline year. Effect size differences range from -0.004 to 0.11 

when this method is used, which is on par with differences for the “applicant” group. In 

contrast, differences for the radius method range from 0.23 to 0.33. This pattern of results 

is to be expected, because the radius method selects several “suitable” matches for each 

RF school, as opposed to the nearest neighbor method which selects only the best match. 

Although pretest differences for the radius method are the largest among the matching 

methods, they are still much smaller in magnitude than test score differences for the 

“eligible” group from which they are drawn (effect size = 0.53, Table 4-2). 

 

 Number of years of pre-intervention data (CITS sets vs. DD sets
54

): Matching on 

more years of pretest data (6 years vs. 3 years) decreases comparability with respect to 

test score levels in the last baseline year. This is especially apparent when the radius 

method is used: the difference in baseline test score levels is 0.33 SD when matching on 

                                                        
54

 CITS comparison sets are matched sets using 6 years of baseline data, while DD comparison sets are matched 

using 3 years of data.   
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6 years of pretests, compared to 0.23 when matching on 3 years of pretests. This result 

suggests that matching on more information may actually put a constraint on one’s ability 

to match on pretest scores right before the intervention begins. However, it is important 

to remember that when using a CITS design, the most important consideration is that the 

treatment and comparison group should have similar baseline slopes, since this is the key 

element of the design for identifying impacts. As seen in Table 4-3, baseline slopes are 

indeed very similar when matching is conducted using 6 years of data (difference = -0.01 

to -0.09), which confirms that matching for the CITS design was successful.  

 

 Using demographic characteristics for matching (“radius” vs. “radius with 

demographics”): Matching on demographics – in addition to pretest scores – does not 

appreciably improve the comparison group’s similarity to RF schools, with respect to 

either demographics or pretest scores. In this case, matching only on pretest scores is 

sufficient for achieving comparability with respect to test scores and demographic 

characteristics, even though the latter are not included in the matching process. However, 

this might not always be true. Recall that in our analysis, a minimum of 3 years of 

baseline data is used for matching; the patterns we observe might not generalizable to 

situations where only 1 or 2 years of pretest data are available. 

 

In summary, the “applicant” and “nearest neighbor” groups have the greatest face validity, 

because they are most similar with respect to baseline test scores. Of the two, the “nearest 

neighbor” group is most credible, because it is also similar to the RF schools with respect to 

demographic characteristics. 

 

5 Estimated Impacts from the DD and CITS Designs 
 

In this section, we examine the estimated impact of Reading First based on the DD and CITS 

designs, for each of the comparison groups listed in Table 4-1.
 
To examine the robustness of our 

conclusions, we replicate the analysis across two follow-up years (first and second year of the 

intervention) and two outcomes (reading scores, math scores). Before reviewing the findings, we 

first describe the statistical models used to estimate impacts, as well as the criteria used to 

compare the impact estimates and to answer our research questions. 

 

5.1 Statistical Models Used to Estimate Impacts 
 

The DD and CITS impacts are estimated using multilevel regression models, to account for the 

fact that there are multiple test scores per school (one for each school year). As described 

elsewhere, it is important to account for such clustering, otherwise the standard errors of impact 

estimates will be too small (Bertrand, Duflo, & Mullainathan, 2002). 

 

For the DD design, we fit a multi-level model to a panel (longitudinal) dataset that includes the 

test scores and school characteristics of the RF schools and the relevant comparison group, for 3 

pre-intervention years and 2 follow-up years:  
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Level 1 (school years within schools): 

 

                                       
 2  2 + 2         2 +     

 

 

Level 2 (schools): 

            

 

where j denotes schools and time t spans three baseline years (2002-2004) and two follow-up 

years (2005 and 2006). The variables in the model are defined as follows: 

 

    = Average 3
rd

 grade test score (reading or math) for school j in 

spring of year t  

       = Dichotomous indicator for whether school j is a treatment school 

(=1 if school received RF funds; 0 if a comparison school) 

     = Dichotomous indicator for test scores in the first intervention year 

(=1 if 2005; 0 otherwise)  

     = Dichotomous indicator for test scores in the second intervention 

year (=1 if 2006; 0 otherwise)  

   = Between-school random variation in the baseline mean  

    = Random variation in test scores across time within schools 

(within-school variation)
 55

 

 

From this model, we can obtain estimates of the following quantities of interest:  

 

   = Baseline mean for the comparison schools  

      = Baseline mean for the treatment schools  

   = Change over time from the baseline mean for the comparison 

schools in Year 1 of the intervention 

      = Change over time from the baseline mean for the treatment 

schools in Year 1 of the intervention 

   = Change over time from the baseline mean for the comparison 

schools in Year 2 of the intervention 

                                                        
55

 The covariance structure of this model – whereby time points are nested within schools – accounts for the 

clustering of time points within schools. 
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      = Change over time from the baseline mean for the treatment 

schools in Year 2 of the intervention 

 

Therefore, the estimated impact of the intervention in Year 1 – the change over time for 

treatment schools minus the change over time for comparison schools – is   . Similarly, the 

estimated impact in Year 2 is   . The standard error of these coefficients (which accounts for 

clustering) can be used to test whether the estimated impact in each follow-up year is statistically 

different from zero. Impact analyses with comparison sets created with replacement and/or one-

to-many matching are weighted.
56

  

 

For the CITS design, we use the following multilevel model, which is fitted to data for all 6 

baseline years and the 2 follow-up years:
 
 

 

Level 1 (school years within schools): 

                                                 
                                               

 

 

Level 2 (schools): 

          

          

 

where j denotes schools and time t spans all 6 baseline years (1999-2004) and 2 follow-up years 

(2005 and 2006). Variables are defined as before, with the addition of the following variables to 

measure the trend in test scores and the between-school variation in the baseline intercept and 

trend: 

 

         = Continuous variable for time period (school year) centered at 

the last baseline year (= 0 in 2004).  

   = Between-school random variation in the baseline intercept 

(centered at the last baseline year) 

   = Between-school random variation in the baseline slope
57

  

 

The model provides estimates of the following quantities:  

                                                        
56

 Analyses with the nearest neighbor comparison set (with replacement) use weights to account for the number of 

times a comparison school is selected as a match. Analyses based on the radius method use weights to account for 

variation in the matching ratio across treatment schools as well as the number of times a comparison school is 

selected as a match. 
57

 Similar to the DD model, the covariance structure accounts for the nesting of time points (school years) within 

schools, by allowing the baseline mean and slope to vary randomly across schools. 
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   = Baseline mean (intercept) for the comparison schools in the 

last baseline year  

      = Baseline mean (intercept) for the treatment schools in the last 

baseline year 

   = Baseline slope for the comparison schools 

      = Baseline slope for the treatment schools  

   = Deviation from baseline trend for the comparison schools in 

Year 1 of the intervention 

      = Deviation from baseline trend for the treatment schools in 

Year 1 of the intervention 

   = Deviation from baseline trend for the comparison schools in 

Year 2 of the intervention 

      = Deviation from baseline trend for the treatment schools in 

Year 2 of the intervention 

 

Thus, in this model,    represents the estimated impact in Year 1 – the deviation from trend for 

treatment schools minus the deviation from trend for comparison schools. Similarly, the 

estimated impact in Year 2 is   . As in the DD design, one can then use the standard error of 

these coefficients to test whether the estimated impact is statistically different from zero. Impact 

analyses with comparison sets created with replacement and/or one-to-many matching are 

weighted. 

 

Like the RD findings presented in Section 3, all CITS and DD impact estimates and standard 

errors presented in this section are in effect sizes. Effect sizes for both reading and math are based 

on a standard deviation of 21.06, which is the student-level standard deviation for scores in 

normal curve equivalents (NCEs).
58

 More detailed results from the impact analysis – in their 

original scale – can be found in Appendix D.  

 

5.2 Criteria for Comparing Impact Estimates: Bias and Precision 
 

One of the key questions in this paper is whether the CITS and DD design can produce internally 

valid estimates of program impacts.  To answer this question, we calculate the bias for each DD 

and CITS estimate, defined as the difference between the DD or CITS impact estimate and the 

RD impact estimate (the causal benchmark): 

                                                        
58

 We use the student-level standard deviation because Reading First aims to improve student achievement. In 

contrast, the effect sizes in Tables 4-2 to 4-4 are based on the school-level standard deviation, because these tables 

examine the success of the matching exercise, which should be gauged based on school level outcomes since 

schools are the unit used for matching. 
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where     
  is the estimated impact from the RD design and     

  is the estimated impact from the 

DD or CITS design.  

 

As seen here, the bias is assessed based on two impact estimates, each of which is estimated with 

error. Therefore, what we observe is in fact the estimated bias, which is also estimated with error. 

This error must be taken into account when interpreting the magnitude of the estimated bias, and 

in particular we must determine whether the confidence interval around each impact estimate 

includes zero. If it does, then there is no evidence that the DD or CITS impact estimates are 

biased.  

 

To conduct hypothesis testing on the estimated bias, we need to determine its standard error. Yet 

obtaining the correct standard error is tricky because the impact estimates being compared (   
  

and     
 ) are not independent: the treatment group is the same across impact estimates, and 

there is also overlap in the comparison groups used to estimate each impact.
59

 In order to make 

correct inferences about the size of the bias, the standard error of the estimated bias must account 

for this dependence. If we were to incorrectly assume that the impact estimates are independent, 

then the standard error of the estimated bias would be too large, and we could mistakenly 

conclude that the estimated bias is not statistically significant when in fact it is. We use non-

parametric bootstrapping to obtain the right standard errors for the estimated bias. Bootstrapped 

standard errors account for the dependence between impact estimates and can be used to test 

whether the estimated bias for a given DD or CITS impact estimate is statistically different from 

zero.
60

 In addition, bootstrapping is also used to test whether bias estimates differ across different 

comparison group selection methods, as well as across the DD and CITS designs.
61

 

  

Finally, we also compare the standard error of impact estimates, as a means of gauging their 

relative precision. Precision is especially relevant for the choice of the comparison group 

selection method. As noted earlier, some matching methods produce larger comparison groups, 

and therefore the resulting impact estimates are more precise. Assuming that two methods have 

                                                        
59

 For example, some of the non-RF schools used in the RD analysis are also comparison schools in the DD or CITS 

analyses. See Appendix C for tables showing the amount of overlap between comparison groups.  
60

 Importantly, bootstrapping also accounts for uncertainty in the propensity score matching process. A 

bootstrapping approach is also used in Fortson et al. (2012). Appendix E provides further information on the 

bootstrapping process. Appendix E also presents estimates of the correlation between the RD and CITS/DD impact 

estimates, which confirms that they are indeed highly correlated to each other. 
61

 Formally, we test whether the difference in bias estimates between two methods (for example, between nearest 

neighbor matching and radius matching or between DD and CITS) is statistically different from zero. If not, then 

there is no evidence that the DD and CITS designs and/or different selection methods are differentially biased. 

Standard errors for these tests are also obtained using non-parametric bootstrapping. See Appendix E for details. 
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similar bias, then the method whose estimates are more precise is preferred because it increases 

the likelihood of detecting policy-relevant impacts.   

 

Previous validation studies have opted for criteria other than bias and precision to compare 

impact estimates across designs, so it is incumbent on us to explain why we do not use them in 

our analysis. The first such criterion is the statistical significance of impact estimates – that is, 

whether inferences about program effectiveness (based on p-values) are the same across study 

designs.
62

 In our study, we do not use this criterion for two reasons. The first reason is 

conceptual. In a validation study, the primary question is not whether the program is effective (as 

discussed in Section 3, the size of the impact is irrelevant), but whether impact estimates differ 

from each other. Accordingly, the relevant hypothesis test in a validation study is whether 

differences across estimates are statistically significant, not whether impact estimates themselves 

are statistically significant. The second reason for not using the statistical significance of impact 

estimates as a criterion is more technical. The impact estimates in our analysis differ in terms of 

their precision, due to differences in study design and the size of the comparison group. When 

precision differs across two estimates, these estimates may exhibit different patterns of statistical 

significance, even when both of them are causally valid. In other words, bias and precision are 

confounded. As described earlier, we prefer to consider bias and precision separately, since bias 

is the most important consideration in a validation study.  

 

Previous studies have also used the mean squared error (MSE) as a criterion for comparing 

impact estimates.
63

 This metric was discussed in Section 3, in the context of determining the 

optimal radius for the radius matching method.
64

 We do not use the MSE as a criterion for 

comparing impact estimates in this paper because it suffers from the same problem as statistical 

significance: by definition, it combines the bias and precision of an estimated impact into one 

measure, which makes it difficult to compare the MSE of different impacts estimates. We argue 

that it is more useful to consider bias and precision separately, as outlined in our approach.
65

  

 

5.3 Impacts on Reading Scores 
 

As a visual guide for interpreting the CITS and DD impact estimates, Figures 5-1 and 5-2 plot 

the baseline and follow-up reading test scores (in NCEs) for RF schools and each of the 

comparison groups. As seen in these figures, the baseline slope in reading test scores for Reading 

First schools is relatively flat, meaning that test score growth was quite stable in the baseline 

period. We also see an abrupt drop in test scores in Year 2, perhaps due to a state-wide policy 

event or a rescaling of reading test scores.
66

 These general patterns are also observed in the 

                                                        
62

 This approach is used in Cook et al. (2008). 
63

 This approach is used in Orr, Bell, and Kornfeld (2004). 
64

 The MSE for an impact estimate is equal to the square of the estimated bias, plus the variance of the impact 

estimate. 
65

 Bell and Orr (1995) also propose comparing impact estimates using a Bayesian “maximum risk function”. 

However, we do not use it in our analysis, because it requires making a decision about a “policy relevant” cut-off for 

the impact. This is difficult to determine in the case of impact on test scores.  
66

 We were unable to reach anyone in the department of education who could tell us why this had happened. 
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comparison groups, which gives credibility to these groups as valid reference points. The one 

exception – as already noted – are the “State” and “Eligible” groups, whose reading test scores 

are substantially higher than those of RF schools and the other comparison groups (Figure 5-1). 

From these figures, we can also see that Reading First did not appreciably affect reading 

achievement – test scores in Reading First schools did not improve by a greater amount in the 

follow-up period relative to the comparison schools.   

 

INSERT FIGURES 5-1 AND 5-2 ABOUT HERE 

 

Estimated Bias 

 

Figures 5-3 and 5-4 present impact estimates and 95% confidence intervals for the CITS design 

and DD designs in the first and second year of the intervention, for each comparison group. 

These figures also include the “benchmark” RD impact estimate and its confidence interval, as a 

reference point.  

 

In general, we see that all impact estimates (including the RD benchmark) hover around zero and 

that there is no discernible pattern of bias. There is also substantial overlap in the confidence 

intervals for the RD impact estimate and the intervals for other estimates, which suggests that the 

DD and CITS estimates are not statistically different from the causal benchmark. As noted 

earlier, however, the impact estimates are correlated and so strictly speaking, the confidence 

intervals cannot be directly compared. 

 

INSERT FIGURES 5-3 AND 5-4 ABOUT HERE 

 

Accordingly, Table 5-1 presents formal tests of whether estimated bias for each DD and CITS 

estimate is statistically significant. Recall the estimated bias is defined as the difference between 

the DD or CITS estimate and the RD impact estimate, which here are scaled as an effect size. 

Bias estimates are small in magnitude, ranging from -0.11 to 0.04. Based on bootstrapped 

standard errors – which account for the correlation among impact estimates – none of these bias 

estimates come close to being statistically significant at the 5 percent level, for either study 

design (DD or CITS) or intervention year (Year 1 or Year 2). This confirms that all impact 

estimates are internally valid.  

 

INSERT TABLE 5-1 ABOUT HERE 

 

Differences in Bias and Precision across Comparison Groups 

 

Next, we can compare the size of the estimated bias and the precision of impact estimates across 

study designs, matching methods, and matching characteristics. Bias estimates for each group are 

presented in Table 5-1, while the standard error of each impact estimates is shown in Figures 5-3 

and 5-4. Statistical tests for the difference in bias estimates across groups and designs (based on 

bootstrapping) can be found in Appendix E. The key findings are as follows: 
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 DD design vs. CITS design: The two study designs are very similar with respect to their 

estimated bias and precision. For a given selection method, the estimated bias does not 

statistically differ across the two study designs. The two designs provide similar 

estimates because the baseline trend in test scores in similar for RF schools and 

comparison schools (as shown in Figures 5-1 and 5-2), in which case it is less crucial to 

use a CITS design to control for pre-existing trend differences. Had the baseline slope in 

test scores differed across the two groups, then the two designs could have produced 

different results (with the CITS results being more credible). It is also important to 

remember that the DD design implemented in this paper is an especially strong example 

of this design, because it uses 3 years of pretest data; the two designs might have 

produced more divergent estimates had only 1 year of pretest data been used for the DD 

design. With respect to precision, the standard error of CITS estimates is larger than for 

DD estimates as expected, because the CITS design (correctly) incorporates additional 

uncertainty about future projections into the standard error. However, differences in 

precision are small – 0.03 to 0.05 for the CITS design and 0.02 to 0.05 for the DD design. 

Our findings also show that the impact estimates for the CITS design are slightly less 

precise in Year 2 than in Year 1, due to greater uncertainty in projections that are further 

out in time; conversely, standard errors for the DD design are the same in both years, 

because this design does not account for forecast uncertainty.
67

  

 

 Nearest Neighbor vs. Radius Matching: Estimated bias for the radius matching (one-to-

many) is not statistically greater than for the nearest neighbor method, yet the radius 

method does yield more precise impact estimates. In Year 1 for example, the standard 

error for the radius method is about 50% of the size of the standard error for the nearest 

neighbor method. This has important implications for the minimum detectable effect size 

(MDES) and the ability to detect impacts if they exist; in Year 1, for example, the MDES 

is 0.13 for the nearest neighbor method and 0.06-0.07 for the radius method.
68

 

 

 Matching with replacement (“Nearest Neighbor”) vs. without replacement (“NN 

w/out replacement”): There does not appear to be any notable benefit to choosing 

schools without replacement. Matching without replacement does increase the sample 

size by a small amount, but this does not appreciably reduce the standard error.  

 

 Matching on test scores (“Radius”) vs. Matching on test scores and demographics 

(“Radius w/ demographics”): There is no empirical benefit to matching on 

demographic characteristics in addition to test scores. Bias estimates for these two 

approaches are not statistically different from each other, and their standard errors are 

also similar (ranging from 0.02 to 0.03). This happens because adding demographics to 

the matching process produces almost the same comparison group as matching on 

                                                        
67 See Appendix B for details on the statistical power of the two designs. 
68

 The MDES is 2.8 times the standard error of the estimated impact (in effect size). 
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pretests alone.
69

 These results may be specific to our study, however. Recall that we use 

at least 3 years of baseline data for matching; in situations where only 1 or 2 years of 

pretest data are available, also matching on demographic characteristics might produce a 

different (and more credible) comparison group. 

 

 Prescreened groups (“State” and “Eligible”) vs. Matched Groups: There is no 

evidence of bias for the two prescreened (unmatched) groups, nor for the matched 

groups. However, the matched groups have two distinct advantages over the prescreened 

groups. First, impact estimates from the matched groups have greater face validity, 

because they are more similar to the RF schools with respect to baseline test scores 

(whereas the two prescreened groups are higher achieving than the RF schools). Second, 

impact estimates from some matched groups are also more precise. In Year 1 for 

example, the standard error for the radius matching method is 73% of the size of the 

standard error for the CITS impact estimate based on “eligible” schools, even though the 

latter group is larger. This happens because the matching process decreases the variability 

in test scores among schools in the “radius” comparison group relative to the “eligible” 

group.  

 

 “Applicants” vs. Matched Groups: The estimated bias does not statistically differ for 

matched comparison groups compared to “applicants”. However, as noted earlier, radius 

matching (which yields a larger comparison group) is superior in terms of precision. In 

Year 1 for example, the standard error for the CITS impact estimate based on the radius 

method is about 56% of the size of the standard error for the impact based on applicants. 

 

In summary, we conclude that radius matching confers greater precision while still providing 

impact estimates that are internally valid.  

 

5.4 Impacts on Math Scores 
 

Our findings about bias – and differences in bias – also hold for math scores, so we discuss them 

only briefly in this section. The consistency of the results across reading and math lends strength 

to our conclusions. 

 

Figures 5-5 and 5-6 plot the trend in math test scores (in NCEs) for RF schools and the 

comparison groups. Similar to reading test scores, test score growth for RF schools was minimal 

(flat) in the baseline period. With the exception of the “State” and “Eligible” groups – which are 

higher achieving – baseline test scores for RF schools are very similar to those for comparison 

school (Figure 5-5).  

 

                                                        
69

 Among comparison schools in the “Radius” comparison group, 69% are also included in the “Radius 

w/demographics” group. For the math analysis (next section), the overlap between groups is 90%. See Tables C-4 

and C-5. 
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INSERT FIGURES 5-5 AND 5-6 ABOUT HERE 

 

Figures 5-7 and 5-8 present the estimated impact on math scores for the CITS design and DD 

designs, while Table 5-2 presents statistical tests of the estimated bias for each impact estimate. 

The range of bias estimates for math (-0.12 to 0.05) is similar to the range of the estimated bias 

for reading impacts. None of the bias estimates for math are statistically significant.
70

   

 

INSERT FIGURES 5-7 AND 5-8 ABOUT HERE 

 

INSERT TABLE 5-2 ABOUT HERE 

 

Our conclusions about differences in bias (and precision) across comparison groups are also the 

same for impacts on math scores as for impacts on reading. That is, we conclude that radius 

matching provides impact estimates that are both internally valid and relatively more precise.   

 

6 Discussion 
 

Having reviewed the results, we can now take stock of our research questions and make 

recommendations based on the findings. 

 

 Can the CITS and DD designs provide internally valid estimates of the impact of a 

school-level intervention, even when it is not possible to use a geographically local 

comparison group?  

 

Overall, our findings suggest that the CITS and DD designs can provide internally valid 

estimates of program impacts, even when it is not possible to restrict the comparison pool to the 

same set of districts as the treatment group. Statistical tests confirm that the estimated bias is not 

statistically significant for any of the impact estimates. These results are consistent across 

comparison groups and matching methods, across implementation years and across subject areas.  

 

This is an important finding, because randomized experiments at the school-level are not always 

politically feasible, and regression discontinuity designs can have limited power when sample 

sizes are small (as indicated by the larger confidence intervals for this design in Figures 5-2 and 

5-7). For example, the MDES for the estimated impact of Reading First on reading scores in 

Year 1 is 0.21 based on the RD design, compared to 0.13 for the nearest neighbor method and 

0.06-0.07 for the radius method.  In addition, there are also challenges to using the RD design in 

practice – many evaluations do not lend themselves to using an RD design. 

 

                                                        
70

 As seen in Figures 5-7 and 5-8, some of the DD and CITS impact estimates are statistically different from zero. 

However, as already discussed, we do not use the statistical significance of individual impact estimates as a criterion 

to evaluate bias, due to differences in sample size (and therefore precision) across the impact estimates. The more 

relevant hypothesis test is whether the estimated bias is statistically significant (based on bootstrapped standard 

errors) presented in Table 5-2. 
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It is also reassuring that the comparison group does not need to be “local” to obtain internally 

valid estimates of impacts. As noted earlier, there are situations in which it may not be 

appropriate (or possible) to restrict the comparison group to schools in the same districts as the 

treatment schools – for example, when there is spillover to other schools in the district. Where 

feasible, comparison schools should be from the same set of districts as the treatment schools, 

but this does not appear to be a necessary condition for validity. 

 

 How do the CITS design and the DD design compare with respect to bias reduction and 

precision? 

 

Empirically, our study does not provide much scope for demonstrating the advantages of using 

the CITS design (based on 4+ years of pretest scores) instead of the DD design (based on only 3 

or fewer years of pretest scores). We find that the CITS and DD designs both produce internally 

valid estimates of Reading First impacts, and that the estimated bias does not differ across the 

two designs. Their precision is also very similar. 

 

However, the internal validity of the DD design in this case may be specific to our study and 

may not generalizable to other contexts. In the first instance, the baseline slope in test scores is 

similar for RF schools and the comparison schools. Had the baseline growth in test scores been 

different across the two groups, the DD design would have produced biased estimates of impacts 

(this is a realistic scenario, because when very few baseline data points are available, one cannot 

match schools on baseline trends).  Second, the DD design used in this paper is especially strong 

and perhaps atypical, because it makes use of 3 years of baseline data. As discussed earlier, 

having 3 years of data (as opposed to 1 or 2) strengthens the rigor of the design, because it then 

becomes possible to match on multiple years of pretest scores, and by extension to choose a 

more credible comparison group. Had fewer years of baseline data been used, the DD design 

might have produced biased results, because baseline slopes might have differed between RF 

schools and the comparison group. This question will be examined in a future paper.  

 

With respect to precision, the two designs produce impact estimates with similar standard errors. 

This is due to the fact that our study looks at shorter-term impacts only. As explained earlier, 

standard errors from the DD design do not account for the additional uncertainty in test score 

projections in the follow-up period, while the CITS design does (correctly) account for such 

forecasting error. For this reason, CITS standard errors are larger than DD standard errors, and 

the standard error of CITS impact estimates increases for projections further out in time. In this 

study, it is only possible to estimate short-term impacts (first and second follow-up year), and in 

these years there is little difference between the precision of CITS and DD impact estimates.  

 

 Can the precision of impact estimates from the CITS and DD designs be improved 

without compromising causal validity, through the choice of matching method (and 

thus the resulting sample sizes)? 
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Based on our findings, it is indeed possible to improve the precision of impact estimates without 

undermining their causal validity. Overall, we conclude that when pretest scores are available for 

matching, all matching methods produce internally valid impact estimates. This corroborates the 

findings of prior validation studies. Therefore, one can choose the selection method that will 

maximize precision.  

 

The most effective means of increasing the precision of DD or CITS impact estimates is to use 

radius (one-to-many) matching. In the context of Reading First, for example, standard errors 

from this method are half that of other methods, because it produces a larger comparison group. 

By extension, the minimum detectable effect size (MDES) based on radius matching will be half 

that of the MDES for other methods.  

 

Another strategy for increasing precision (the sample size) is to match without replacement. 

However, in the case of Reading First, matching without replacement does not improve precision 

by a noteworthy amount. This is probably  because optimal matching (i.e., matching without 

replacement) is most effective for improving precision when the comparison pool for matching is 

small and when there is intense competition for comparison schools (Gu & Rosenbaum, 1993). 

When there are few schools from which to choose and matching is conducted with replacement, 

a given comparison school will be matched to multiple treatment schools, so in fact there could 

be few “unique” schools in the comparison group. In this situation, matching without 

replacement is better, because it will yield a relatively larger comparison group and improve 

precision. In contrast, when the matching pool is large, competition for comparison schools is 

less intense, so it is less likely that a comparison school will serve as the “match” for multiple 

treatment schools when matching with replacement. In this situation, the sample size gains to 

matching without replacement are minimal (as they are in the case of Reading First). In our 

study, the pool of “eligible” comparison schools is large (419 schools) which is probably why 

matching without replacement does not appreciably increase the sample size or improve 

precision. 

 

Another way of increasing the sample size is to use, as a comparison group, all “untreated” 

schools in the state or all schools eligible for the intervention. In our study, we find that 

estimated impacts based on these larger comparison groups are internally valid; previous studies 

have found a similar result (Fortson et al., 2012). However, these larger “unmatched” groups fail 

an important requirement – they have much higher test scores at baseline, and therefore they lack 

“face validity” as a source of counterfactual outcomes for Reading First schools. This is likely to 

be true in most evaluations – schools that participate in an intervention are typically observably 

different than other schools in the state or district. Moreover, even though the sample size is 

smaller for the radius method than when using all schools in the state as a comparison group, 

estimates from the radius method are actually more precise because the matching process 

reduces the heterogeneity in test scores in the sample. Therefore, the radius matching method is 

preferred – its results have both more face validity and greater precision.  
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 Is bias reduction stronger or weaker when both pretests and baseline demographic 

characteristics are used for matching as opposed to pretests only? 

 

We find that matching on pretests and baseline demographic characteristics does not further 

reduce bias. In other words, matching on pretest scores alone is sufficient to ensure that the 

comparison group provides the right counterfactual outcomes for RF schools in the follow-up 

period.  

 

However, we caution that this conclusion may only be applicable to school-level evaluations. As 

noted in the introduction, other studies have found that further matching on demographic 

characteristics does substantially reduce bias (Steiner et al., 2010). In our study, pretest scores 

are sufficient – and demographics do not help – because baseline test scores are an especially 

powerful predictor of future test scores. This happens for two reasons. First, we use multiple 

years of baseline test scores for matching (3 or 6) rather than just one, which strengthens the 

extent to which baseline scores can predict scores in the follow-up period. Second, our analysis 

is conducted at the school level rather than at the student level. School-level test scores are more 

reliable (less noisy) that student-level scores, and by extension baseline test scores are more 

predictive of future test scores at the school-level. The fact that both test scores and 

demographics are more reliably measured at the school level also increases the correlation 

between these two sets of measures, and therefore reduces the amount of additional information 

provided by demographics once test scores have been taken into account in the matching 

process.  

 

Recommendations 

 

Based on these findings, and assuming that pretest data are available for matching, we make the 

following recommendations: 

 

 Researchers should try to obtain at least 4 years of pretest data, so that a CITS design 

can be used to estimate impacts: The main lesson from our analysis is that is important to 

obtain as many years of pretest data as possible. With 4 or more years of test scores, one can 

ensure that treatment and comparison schools have similar baseline test scores and slopes, 

and use a CITS design to estimate impacts.
71

 However, if only 3 or fewer years of available 

pretest data are available, the slope of the baseline trend cannot be estimated and it is 

impossible to determine whether the treatment and comparison groups were on similar 

growth trajectories before the intervention began. By extension, impact estimates from the 

DD design might not be internally valid, and frustratingly, there would be no way to 

convincingly determine whether they are or not. In this situation, researchers should be very 

circumspect about the causal validity and interpretation of their findings.  

                                                        
71

 Of course, it may be possible to have too many years of pretest data. One should not use pretest scores that 

happened in the distant past, since these test scores are likely irrelevant for predicting future outcomes and may bias 

the prediction. 
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 Radius matching (one-to-many) should be used where feasible: We recommend using the 

radius matching method to improve precision when the following conditions are met: (a) the 

candidate pool is large or at least as big as the treatment group, and (b) 2 or more years of 

pretest data are available. We do not recommend using this method unless 2 years of pretest 

data are available, because this is the minimum amount of data needed to determine the 

“optimal” radius.
72

 If only one year of baseline test scores is available, then the optimal 

radius cannot be determined and instead the radius must be selected based on ad hoc 

methods, which could introduce bias into the impact estimates. Our recommendation to use 

radius matching also assumes that there is no data collection cost constraint on collecting 

follow-up test scores for more schools, and that the “eligible” candidate pool for choosing 

comparison schools is sufficiently large to allow multiple matches for each treatment school. 

Using a radius matching approach is also a more rigorous approach than using all schools in 

the state or all eligible schools as a comparison group, because the radius method will 

produce a comparison group that looks more similar to the treatment group with respect to 

pretest scores and demographics, which lends added credibility to the comparison group as a 

source of counterfactual outcomes. 

 

 If the candidate pool is too small for radius matching, then precision can be improved 

either by using “optimal” nearest neighbor matching or by using “applicants” as a 

comparison group: In some educational evaluations, the pool of potential comparison 

schools could be quite small if the geographical scope of the intervention is narrow. For 

example, if the intervention being evaluated is located in only one school district, then the 

eligible candidate pool will be limited to schools in the district. If the candidate pool is small, 

then radius matching may not be a feasible strategy, because competition for matches is 

intense and is it less likely that there will be many “good” matches for each treatment school. 

In this situation, researchers have two options. The first is to use nearest neighbor (one-to-

one) matching to choose schools from the pool of candidates; the second option is to use the 

subgroup of all non-winning “applicants” as a comparison group, assuming that information 

on application status is known. The choice between these two strategies depends on the 

number of non-winning applicants; if it is larger than the number of treatment schools 

(successful applicants), then using non-winning applicants will provide a larger comparison 

group than using nearest neighbor matching, and therefore better precision. Conversely, if 

there are fewer non-winning applicants than schools in the treatment group, then the nearest 

neighbor strategy should be used because it will provide a larger comparison group.  In this 

case, researchers should conduct matching without replacement (optimal matching) since it 

will produce a relatively larger comparison group than matching with replacement (and 

therefore more precise estimates). It has also been argued that when there are few “good” 

matches for the treatment group (as may happen when the pool of comparison candidates is 
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 Recall that the optimal radius is determined by estimating the “impact” in the last baseline year (which should be 

zero). Therefore, this method requires at least 2 years of baseline data: the last baseline year which serves as the 

“follow up” year, plus at least one other baseline year.  
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relatively small), optimal matching can produces comparison groups that are more similar to 

the treatment group and therefore have greater face validity (Gu & Rosenbaum, 1993). 

 

 Matching on demographic characteristics should be conducted as a sensitivity test: 

Based on our findings, matching on demographic characteristics (in addition to pretest 

scores) does not add anything to the validity or precision of the impact estimates from a DD 

or CITS design. In theory, however, there are reasons both for and against matching on 

demographic characteristics. On the one hand, adding demographics to the matching process 

could increase the credibility of the matching process and the resulting comparison group. On 

the other hand, if the pool of candidate schools is small, then it may be difficult to find 

schools that look similar to the treatment group on both pretests and demographic 

characteristics. In this situation, adding demographics to the mix could impose a constraint 

on one’s ability to match schools with respect to baseline test scores. Matching on pretest 

scores should be prioritized because they are the strongest predictor of future test scores. 

Therefore, we recommend matching on pretest scores in the primary analysis, and then 

matching on pretests and demographics as a sensitivity test. 

 

It is important to note that our findings and recommendations may be limited to studies whose 

conditions are similar to those of the Reading First evaluation, and in particular to school-level 

evaluations. Therefore, in practice, we recommend that researchers conduct their own 

“validation” exercise to choose the right comparison group method. In a “real world” evaluation 

the “true” impact of the program is not known. However, the right selection method can be 

chosen based on a different benchmark – the impact of the program in the last baseline year, 

which should be zero. The validation exercise would proceed as follows: (1) identify “matched” 

comparison schools using all baseline years except the last one, and (2) estimate “impacts” in the 

last baseline year using the resulting comparison groups(s). The right selection method would be 

the one that most reliably estimates an impact of zero (i.e. the method where the standard error is 

the smallest but where zero, which by construction is the correct answer, is still included in the 

confidence interval for the impact estimate).
73

 Having chosen a “primary” matching method, one 

would then conduct the matching exercise again, using the chosen method and all years of 

baseline data. After comparison schools have been selected, one would then estimate the impact 

of the intervention, using a CITS design if there are at least 4 years of baseline data (and a DD 

design if there are not). Results based on other matching methods can also be presented, as a 

sensitivity test. 

 

In conclusion, our findings corroborate those of previous validation studies, showing that non-

experimental designs (in this case the DD and CITS design) can produce internally valid 

estimates of program impacts when pretest scores are available, regardless of the matching 

method that is used to select comparison schools. Notably, this is the first study to demonstrate 

                                                        
73

 More formally, one could calculate the MSE for each method, based on the estimated impact in the last baseline 

year (      and its standard error, and then choose the method with the smallest MSE:  
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that the CITS design can produce internally valid results. Our paper also contributes to the 

literature by showing that (1) using a comparison group that is “local” (i.e., from the same set of 

districts as the treatment schools) is not a necessary condition for obtaining causally valid 

estimates of program impacts; (2) further matching on demographic characteristics is not 

necessary in the context of the DD or CITS design; and (3) the precision of impact estimates 

(and the MDES) can be improved without compromising validity, by matching using the radius 

method rather than nearest neighbor matching. 
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Appendix A: Specification Tests for the Regression 
Discontinuity Design 

 

 

This appendix presents the results of the RD specification tests discussed in Section 3: 

 

 “Impact” on characteristics and outcomes that should not be affected by 

Reading First: Table A-1 presents the impact of Reading First on school 

characteristics that should be unaffected by the intervention. This includes all test 

scores and demographic characteristics in the last baseline year, and demographic 

characteristics in the first and second follow-up year. The estimated impact of 

Reading First on these variables should be zero or not statistically significant. The 

results shown in this table confirm that Reading First did not have an impact on 

these characteristics.  

 

 Functional form tests: Table A-2 present estimated impacts (in effect size) on 

reading and math scores, based on different functional forms for the relationship 

between the rating variable and test scores. The type of relationship is indicated in 

the first column of these tables. The results indicate that regardless of which type 

of model is used, estimated impacts on test scores are not statistically significant. 

 

 Test of difference in slopes: Table A-3 presents tests of the relationship between 

ratings and test scores (slope) on each side of the cut-off. The results indicate that 

the slopes are not statistically different, and that we can use an RD model that 

constrains the slope to be the same on either side of the cut-off. These results also 

suggest that the estimate impact of Reading First does not differ across schools, 

and that the impact estimates are generalizable to the entire sample (and not just 

to schools around the cut-off). 

 

 

INSERT TABLE A-1 ABOUT HERE 

 

INSERT TABLE A-2 ABOUT HERE 

 

INSERT TABLE A-3 ABOUT HERE 
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Appendix B: Minimum Detectable Effect Size for Non-
Experimental Designs 

 

A common way to convey a study’s statistical power is through the minimum detectable 

effect (MDE) or the minimum detectable effect size (MDES). Formally the MDE is the 

smallest true program impact that can be detected with a reasonable degree of power (in 

this case, 80 percent) for a given level of statistical significance (in this case, 5 percent 

for a two-tailed test).
 
The MDES is the minimum detectable effect scaled as an effect 

size—in other words, it is the MDE divided by the standard deviation of the outcome of 

interest (in this paper, we use a standard deviation of 21.06, which is the student-level 

standard deviation for scores in normal curve equivalents). 

 

For samples with more than about 20 degrees of freedom, the MDES is approximately 

equal to 2.8 times the standard error of the relevant impact estimate. Once the analysis 

has been conducted, this calculation is simple because the standard error is known. For 

example, the MDES presented in this paper are based on the standard errors of the 

relevant impact estimates.  

 

In the study design phase, however, the standard error is not yet known and must be 

approximated based on assumptions about the properties of the data and the design that 

will be used to estimate effects. The formulas for the MDES in the study design phase are 

described below for each non-experimental design. 

 

A. RD Design 

 

For the RD design, the MDES is calculated as follows (Bloom, 2012): 

 

              
 

            
  

       

 

where all variables are defined as before and: 

 

  = Number of schools (treatment and comparison) 

  = The proportion of schools that are in the treatment group 

  
  = The proportion of variation in treatment status (T) 

predicted by the centered rating and other covariates 

included in the regression discontinuity model 

 

The collinearity between the rating variable and the outcome (  
   reduces the precision 
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of impact estimates (or conversely it increases the MDES). Therefore, impact estimates 

from a regression discontinuity design generally have more limited power than other 

potential designs (including the DD and CITS designs). See Bloom (2012) for a 

discussion.  

 

B. DD and CITS Designs 

 

The MDES for the DD design is:  

              
 

       
   

 

 
  

where: 

 

  = Number of schools (treatment and comparison) 

  = The proportion of schools that are in the treatment group 

  = The number of years of data in the baseline period 

  = The correlation between baseline and follow-up outcomes  

 

For the CITS design (Bloom, 1999), the MDES is calculated as follows: 

  

                
 

       
   

 

 
 

       
 

          
  

Where variables are defined as before and: 

 

   = The follow-up year of the impact (=0 for first follow-up 

year, 1 for the second, 2 for the third, etc.)  

   = The average value of the baseline years (where baseline 

years are scaled from -1 to –T, where T is the total 

number of baseline years) 

 

We see here that the MDES for the CITS design includes an extra term that accounts for 

predictions based on the baseline trend – this prediction error is greater for impacts that 

are further in time. For this reason, the MDES for the CITS design is higher than for a 

DD design, all else equal. Moreover, the MDES of a CITS impact estimate increases as tf 

increases, because predictions relative to the trend are less reliably estimated for periods 

further out in time. 
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Appendix C: Characteristics of Comparison Groups 
 

This appendix presents supplemental results on the characteristics of schools in the DD 

and CITS analyses: 

 

 Tables C-1 to C-3 present the characteristics of schools used to estimate impacts 

on math scores.  

 

 Tables C-4 and C-5 show the amount of overlap between schools in the matched 

comparison groups used to estimate impacts, for reading and math respectively.  

 

 

INSERT TABLE C-1 ABOUT HERE 

 

INSERT TABLE C-2 ABOUT HERE 

 

INSERT TABLE C-3 ABOUT HERE 

 

INSERT TABLE C-4 ABOUT HERE 

 

INSERT TABLE C-5 ABOUT HERE 
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Appendix D: CITS and DD Impact Estimates 
 
This appendix presents coefficient estimates from CITS and DD impact models used to 

estimate impacts on test scores, for each relevant comparison group. In these tables, 

estimates are shown in their original metric, rather than effect sizes. Tables D-1 and D-2 

presents estimates from the models used to estimate impacts on reading scores, while 

Tables D-3 and D-4 present estimates from the analysis of math scores.  

 

 

INSERT TABLE D-1 ABOUT HERE 

 

INSERT TABLE D-2 ABOUT HERE 

 

INSERT TABLE D-3 ABOUT HERE 

 

INSERT TABLE D-4 ABOUT HERE 
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Appendix E: Statistical Tests of Differences between 
Impact Estimates 

 

This appendix describes the nonparametric bootstrapping conducted as part of the 

hypothesis testing for differences between impact estimates. The appendix also provides 

additional test results that are discussed in the paper. 

  

Calculation of Bootstrapped Standard Errors, P-values and Confidence 

Intervals 

 

The following iteration of steps was repeated 1000 times:  

 

1. Randomly sample 69 schools (with replacement) from the treatment group 

(Reading First schools).  

2. Randomly sample 611 schools (with replacement) from the pool of all non-RF 

schools in the Midwestern State, stratifying by eligibility and application status so 

as to sample 419 schools form the “eligible” pool and 99 schools from the 

“applicant” pool.
74

 

3. For the 69 sampled RF schools, use propensity score matching to select 

comparison schools from the sampled “eligible” pool of 419 schools, based on 

each matching method (nearest neighbor, optimal, radius).  

4. Estimate the relevant impact estimates using the sampled/matched schools (RDD 

estimate, CITS estimates, DD estimates). 

5. Calculate each pair-wise difference between each of the point estimates. 

6. Store these differences. 

 

The result is a dataset that contains 1000 estimates for each pair-wise difference in 

impacts. Based on this dataset, we calculate the standard error, confidence intervals, and 

p-value for each estimated difference between impact estimates: 

 

 The standard error for the difference between two impact estimates is simply the 

standard deviation of this difference across the 1000 iterations.  

 The confidence intervals are the 2.5
th

 and 97.5
th

 percentiles of the difference 

based on the 1000 iterations.  

 The p-value is calculated based on the T-value for the difference (calculated 

using the bootstrapped standard error) and assuming a standard normal 

distribution.  

                                                        
74

 In other words, at each iteration we hold constant the amount of overlap between schools in the state, 

schools in eligible districts, and schools that applied for RF funds.  
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We set the number of iterations at 1000 because this number is sufficient to reach 

stability in the standard errors of bias estimates and to achieve normality of bias 

estimates.
75

 

 

Additional Results 

 

 Tables E-1 to E-4 present p-values for the estimated difference between the DD 

and CITS impact estimates, in each year of implementation and for each outcome 

(reading, math). Mathematically, testing whether there is a statistically significant 

difference between any two non-experimental estimates in this table is equivalent 

to testing whether the estimated bias (relative to the RD design) for these two 

estimates differs by a statistically amount.
76

 When comparing the CITS and DD 

designs, we only compare impact estimates for a given type of comparison group 

(for example, the nearest neighbor method), to ensure that the two designs are 

being compared on a more equal basis. 

 

 Tables E-5 and E-6 show the estimated correlation between impact estimates 

across the 1000 iterations, for each implementation year and by outcome. 

Correlations range from 0.086 to 0.989, hence the importance of accounting for 

the dependence between impact estimates using boot strapping. The bootstrapped 

standard errors for the estimated bias are up to 23% smaller than the standard 

errors that would have been obtained if we had assumed that the impact estimates 

were independent.
77

 

 

 

INSERT TABLES E-1 TO E-4 ABOUT HERE 

 

INSERT TABLE E-5 ABOUT HERE 

 

INSERT TABLE E-6 ABOUT HERE 
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 Standard errors based on 1000 iterations are very similar to standard errors based on 500 iterations. The 

distribution of bias estimates is also normally distributed, based on various formal tests of whether the 

distribution differs from normality (Shapiro-Wilk, Kolmogorov-Smirnov, Cramer-von Mises, and 

Anderson-Darling). 
76Let IRD be the estimated impact from the RD design, INX1 the first non-experimental impact estimate, and 

INX2 the second non-experimental impact estimate INX1. The difference in the bias for the two NX impact 

estimates is = (IRD –  INX1) – (IRD –  INX2) =  INX1 – INX2. 
77

 The standard error assuming independence is simply equal to the square root of (estimated variance for 

the RD impact estimate + estimated variance for the DD or CITS impact estimate). 
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Appendix F: Propensity-Score Matching vs. Direct 
Matching 

 
All matched comparison groups presented in this paper were selected based on the 

propensity score – a unidimensional index of the overall “similarity” between schools on 

a range of characteristics. The propensity score is a useful metric when the goal is to 

match on many different measures or many different time points. However, when there 

are only a handful of matching characteristics, another option is to match schools on each 

characteristic directly, rather than matching them based on a propensity score. The results 

of this latter approach are presented in this appendix as a sensitivity analysis, for impacts 

on reading test scores.  

 

For this supplemental analysis, we focus on the radius matching method (rather than 

nearest neighbor matching) for two reasons. First, the radius method provides larger 

sample sizes and so is better suited for detecting bias (relative to the RD design). Second, 

when matching on two or more characteristics (like in the CITS design), nearest neighbor 

matching is not possible, because it is near-impossible to find a match that is “nearest” on 

all matching characteristics.
78

 “Direct” radius matching was conducted as follows: 

 

 For the CITS design, direct matching was conducted based on two key 

characteristics: (a) the baseline trend in test scores, and (b) test scores in the last 

baseline year. For each school, we first estimated the baseline slope and predicted 

score in the last baseline year, based on 6 years of baseline test scores.
79

 Each 

treatment school was then matched to all eligible comparison schools that fell 

within radius x of its baseline mean and radius y of its baseline intercept. The 

optimal radius used for both the slope and last baseline year was 0.25 SD; these 

optimal radii were determined using the MSE-based approach described in the 

paper.  

 

 For the DD design, direct matching is much simpler because it is based on only 

one characteristic: the average baseline test score for the three years preceding the 

start Reading First. To conduct direct matching, we first estimated the baseline 

mean for each school, and then each treatment school was matched to all eligible 

comparison schools within radius z of its baseline mean. The optimal radius used 

was 0.19 SD, which was determined using the MSE method. 

 

Overall, we find that direct radius matching produces very similar results to simply 

matching based on the propensity score. Specifically: 

                                                        
78

 Radius matching was conducted with replacement. Analyses are weighted to account for the fact that 

some comparison schools are chosen more than once, and to account for varying numbers of matched 

comparison schools per treatment schools. 
79

 These values were obtained by fitting a linear trend to 6 years of baseline test scores. 
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 Table F-1 presents the characteristics of schools in the “radius” and “radius 

direct” comparison sets. The results show that the latter comparison sets are 

similar to the RF schools; they differ by no more than 0.25 SD on test scores and 

demographic characteristics. 

 

 Table F-2 shows the amount of overlap between the comparison schools selected 

using propensity-based radius matching and direct radius matching. There is 

substantial overlap between the two methods, especially among sets used in the 

DD analysis (based on 3 years of baseline test scores). 

 

 Figure F-1plots the 3
rd

 grade test scores of schools in the comparison set created 

using “direct” radius matching. For reference, the test scores of schools in the 

comparison set created using propensity-based radius matching are also shown. 

Both sets have a similar baseline trend as the Reading First schools. 

 

 Figures F-2 and F-3 show the estimated impact of Reading First based on the 

“radius direct” comparison set, for the CITS and DD designs respectively. As a 

reference point, the RD impact estimate (the benchmark) and the propensity-

based radius estimates are also shown. As seen here, the propensity-based and 

direct radius matching methods produce similar findings. 

 

 

INSERT TABLE F-1 ABOUT HERE 

 

INSERT TABLE F-2 ABOUT HERE 

 

INSERT FIGURE F-1 ABOUT HERE 

 

INSERT FIGURE F-2 ABOUT HERE 

 

INSERT FIGURE F-3 ABOUT HERE 
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Figure 3-1 

 

Relationship Between Reading Scores and Ratings 

Reading First schools (N=69) Non-RF schools (N=99) Year 1 
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Year 2 



0 

10 

20 

30 

40 

50 

60 

70 

80 

-140 -120 -100 -80 -60 -40 -20 0 20 40 60 

3
rd

 G
ra

d
e 

M
at

h
 T

es
t 

S
co

re
s 

(N
C

E
s)

 

Rating Centered at Cut-off 

DD and CITS Designs in Educational Evaluation 

 

Figure 3-2 

 

Relationship Between Math Scores and Ratings 

Reading First schools (N=69) Non-RF schools (N=99) Year 1 
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Year 2 



Predicted score Predicted score at Estimated Standard 
at cut-off at cut-off Estimated Impact Error

Subject -Year RF Schools Non-RF Schools Impact in Effect Size in Effect Size p-value

Reading Scores
Year 1 53.339 53.896 -0.556 -0.026 0.075 0.725
Year 2 51.306 50.116 1.190 0.057 0.072 0.434

Math Scores
Year 1 53.690 54.918 -1.228 -0.058 0.075 0.540
Year 2 53.157 53.369 -0.211 -0.010 0.072 0.896

Number of Schools 69 99

Estimated Impact on Test Scores, RD Design

NOTES: Test scores are scaled in normal curve equivalents (NCEs). Effect sizes are based on a standard deviation 
of 21.06, which is the student-level standard deviation for scores in NCEs. The statistical model used to estimate 
impacts includes a treatment group indicator and the rating variable centered on the cut-off of 145. 

Table 3-1

DD and CITS Designs in Educational Evaluation
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Figure 3-3 
 

RD Impact Estimate on Reading Scores (and 95% CI) by Bandwidth Around Cut-off 
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Figure 3-4 
 

RD Impact Estimate on Math Scores (and 95% CI), by Bandwidth Around Cut-off 
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Figure 4-1 

 

Estimating the Impact of Reading First Using a Difference-in-Difference Design 

(Hypothetical Data) 

RF Schools Baseline Mean 

Comparison Schools Baseline Mean 

Follow-up Period 

Reading First Begins  

Fall 2004 

  
 Change from Baseline Mean  

(RF schools) 

Change from Baseline Mean  

(comparison schools) 

ESTIMATED IMPACT =  

Change (RF) - Change (comparison)  
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Figure 4-2 

 

Estimating the Impact of Reading First Using a Comparative Interrupted Time Series Design 

(Hypothetical Data)  

RF Schools Baseline Trend 

Comparison Schools Baseline Trend 

Reading First Begins  

Fall 2004 

Follow-up Period 

ESTIMATED IMPACT =  

Deviation from Trend (RF) - 

Deviation from Baseline Trend  

(RF schools) 

Deviation from Baseline Trend  

(comparison schools) 



Definition of group / With Matching

Comparison Set Name Selection method replacement? Characteristics Reading Math Reading Math Reading Math

Prescreened Groups

State All non-RF schools in state -- -- -- -- 611 611 -- --

Eligible
All non-RF schools in 

eligible districts

-- -- -- -- 419 419 -- --

Applicants All non-RF schools that 

applied for funds

-- -- -- -- 99 99 -- --

Matched Sets Selected from "Eligible" Pool

For CITS Design*

  Nearest Neighbor Nearest neighbor Yes Baseline reading scores 1 1 62 59 -- --

  NN w/out Replacement Nearest neighbor (optimal) No Baseline reading scores 1 1 69 69 -- --

  Radius Radius Yes Baseline reading scores 20 [1-41] 30 [1-50] 369 349 0.10 0.13

  Radius w/ Demographics Radius Yes Baseline scores + 

demographics

25 [1-66] 22 [1-68] 324 323 0.09 0.08

For DD Design**

  Nearest Neighbor Nearest neighbor Yes Baseline reading scores 1 1 58 65 -- --

  NN w/out Replacement Nearest neighbor (optimal) No Baseline reading scores 1 1 69 69 -- --

  Radius Radius Yes Baseline reading scores 31 [1-54] 51 [2-86] 363 346 0.14 0.21

  Radius w/ Demographics Radius Yes Baseline scores + 

demographics

9 [1-23] 87 [1-164] 260 350 0.02 0.20

Number of

unique

comparison

schools

Number of

comparison

schools per

treatment school
a

Optimal

radius

Comparison School Sets

Table 4-1

DD and CITS Designs in Educational Evaluation

(continued)



* Matching is based on a propensity score calculated from 6 pre-intervention (baseline) years of data.

** Matching is based on a propensity score calculated from 3 pre-intervention (baseline) years of data.

a
 Mean [range].

Table 4-1 (continued)

NOTES: -- Not applicable. 



RF

School Characteristic schools State Eligible Applicants

Baseline reading test scores

Predicted score in last baseline year 52.75 57.69 56.51 53.07

(0.7) X (0.53) X (0.05)

Baseline trend (6 years) 1.24 1.26 1.28 1.23

(0.01) (0.03) (-0.01)

Demographic Characteristics (Last Baseline Year)

Percent of schools that are urban 37.68 34.26 35.80 22.22

(-0.07) (-0.04) (-0.32) X

Enrollment 382.61 409.56 400.13 362.55

(0.17) (0.11) (-0.13)

Free/reduced-price lunch (%) 65.64 53.96 57.97 70.73

(-0.56) X (-0.37) X (0.24)

Racial/ethnic composition

  White (%) 81.35 88.31 85.73 88.36

(0.37) X (0.23) (0.37) X

  Hispanic (%) 2.50 1.60 1.68 1.35

(-0.24) (-0.22) (-0.31) X

  Black (%) 15.17 9.16 11.54 9.70

(-0.37) X (-0.22) (-0.33) X

  Other (%) 2.50 1.60 1.68 1.35

(-0.24) (-0.22) (-0.31) X

Number of 3rd grade students 59.97 62.89 60.59 52.04

(0.1) (0.02) (-0.28) X

3rd graders who are female (%) 47.91 47.48 47.56 46.69

(-0.09) (-0.08) (-0.26) X

Children in poverty in district (%) 22.00 20.66 22.45 25.75

(-0.19) (0.06) (0.54) X

Pupil-teacher ratio 14.47 15.57 15.40 14.32

(0.45) X (0.38) X (-0.06)

Number of schools 69 611 419 99

NOTES: Values shown in parentheses are the difference between RF and comparison schools in 

effect size. Effects sizes are calculated using the school-level standard deviation based on all schools 

in RF-eligible districts in the last baseline year (including both RF schools and non-RF schools). 

Differences greater than 0.25 SD are indicated with an "X". Statistical tests of the difference between 

Reading First schools and comparison schools are not shown, because the precision of the estimated 

difference varies across the comparison groups (for a given effect size, larger comparison groups are 

more likely to be deemed statistically different from RF schools).

Comparison Groups

Characteristics of Reading First Schools and Prescreened Comparison Groups 

(for Impacts on Reading Scores)

Table 4-2

DD and CITS Designs in Educational Evaluation



RF Nearest NN w/out Radius w/

School Characteristic Schools Neighbor Replacement Radius Demographics

Propensity score (logit scale) -1.461 -1.480 -1.498 -1.480 -1.688

(-0.02) (-0.04) (-0.02) (-0.07)

Baseline reading test scores

Predicted score in last baseline year 52.75 53.50 53.05 55.07 55.00

(0.11) (0.04) (0.33) X (0.32) X

Baseline trend (6 years) 1.24 1.14 1.16 1.21 1.23

(-0.09) (-0.07) (-0.03) (-0.01)

Demographic Characteristics (Last Baseline Year)

Percent of schools that are urban 37.68 42.03 40.58 41.02 30.07

(0.09) (0.06) (0.07) (-0.16)

Enrollment 382.61 392.78 389.59 376.88 371.14

(0.06) (0.04) (-0.04) (-0.07)

Free/reduced-price lunch (%) 65.64 63.68 63.84 65.18 67.28

(-0.09) (-0.09) (-0.02) (0.08)

Racial/ethnic composition

  White (%) 81.35 81.85 83.23 83.31 83.78

(0.03) (0.1) (0.1) (0.13)

  Hispanic (%) 2.50 2.15 1.98 1.94 1.57

(-0.09) (-0.14) (-0.15) (-0.25) X

  Black (%) 15.17 14.92 13.82 13.83 13.91

(-0.02) (-0.08) (-0.08) (-0.08)

  Other (%) 2.50 2.15 1.98 1.94 1.57

(-0.09) (-0.14) (-0.15) (-0.25) X

Number of 3rd grade students 59.97 59.35 58.45 56.29 56.46

(-0.02) (-0.05) (-0.13) (-0.12)

3rd graders who are female (%) 47.91 47.27 46.67 47.60 48.49

(-0.14) (-0.27) X (-0.07) (0.12)

Children in poverty in district (%) 22.00 22.68 22.69 23.18 22.69

(0.1) (0.1) (0.17) (0.1)

Pupil-teacher ratio 14.47 15.19 15.22 15.17 14.62

(0.29) X (0.3) X (0.29) X (0.06)

Number of schools 69 62 69 369 324

(continued)

Comparison Groups

Characteristics of Reading First Schools and CITS Matched Comparison Groups (for 

Impacts on Reading Scores)

Table 4-3

DD and CITS Designs in Educational Evaluation



NOTES: Values shown in parentheses are the difference between RF and comparison schools in effect size. 

Effects sizes are calculated using the school-level standard deviation based on all schools in RF-eligible districts 

in the last baseline year (including both RF schools and non-RF schools). Differences greater than 0.25 SD are 

indicated with an "X". Statistical tests of the difference between Reading First schools and comparison schools 

are not shown, because the precision of the estimated difference varies across the comparison groups (for a given 

effect size, larger comparison groups are more likely to be deemed statistically different from RF schools).

Table 4-3 (continued)



RF Nearest NN w/out Radius w/

School Characteristic Schools Neighbor Replacement Radius Demographics

Propensity score (logit scale) -1.554 -1.558 -1.565 -1.560 -1.580

(-0.01) (-0.02) (-0.01) (-0.01)

Baseline reading test scores

Predicted score in last baseline year 52.75 53.14 52.72 54.38 54.34

(0.06) (-0.004) (0.23) (0.23)

Baseline trend (6 years) 1.24 1.19 1.18 1.04 1.11

(-0.04) (-0.06) (-0.17) (-0.12)

Demographic Characteristics (Last Baseline Year)

Percent of schools that are urban 37.68 39.13 43.48 45.21 38.73

(0.03) (0.12) (0.16) (0.02)

Enrollment 382.61 374.51 380.86 390.91 388.41

(-0.05) (-0.01) (0.05) (0.04)

Free/reduced-price lunch (%) 65.64 63.94 64.91 63.03 64.44

(-0.08) (-0.04) (-0.13) (-0.06)

Racial/ethnic composition

  White (%) 81.35 84.39 82.29 81.02 80.68

(0.16) (0.05) (-0.02) (-0.04)

  Hispanic (%) 2.50 1.90 2.10 1.88 2.61

(-0.16) (-0.11) (-0.17) (0.03)

  Black (%) 15.17 12.88 14.75 15.92 15.60

(-0.14) (-0.03) (0.05) (0.03)

  Other (%) 2.50 1.90 2.10 1.88 2.61

(-0.16) (-0.11) (-0.17) (0.03)

Number of 3rd grade students 59.97 55.45 56.26 58.59 59.98

(-0.16) (-0.13) (-0.05) (0.0002)

3rd graders who are female (%) 47.91 47.12 47.05 47.07 47.80

(-0.17) (-0.19) (-0.18) (-0.02)

Children in poverty in district (%) 22.00 24.05 23.40 22.83 21.81

(0.29) X (0.2) (0.12) (-0.03)

Pupil-teacher ratio 14.47 14.47 14.81 15.09 14.74

(-0.001) (0.14) (0.25) X (0.11)

Number of schools 69 58 69 363 260

NOTES: Values shown in parentheses are the difference between RF and comparison schools in effect size. Effects 

sizes are calculated using the school-level standard deviation based on all schools in RF-eligible districts in the last 

baseline year (including both RF schools and non-RF schools). Differences greater than 0.25 SD are indicated with 

an "X". Statistical tests of the difference between Reading First schools and comparison schools are not shown, 

because the precision of the estimated difference varies across the comparison groups (for a given effect size, 

larger comparison groups are more likely to be deemed statistically different from RF schools).

Comparison Groups

Characteristics of Reading First Schools and DD Matched Comparison Groups (for 

Impacts on Reading Scores)

Table 4-4

DD and CITS Designs in Educational Evaluation



0 

10 

20 

30 

40 

50 

60 

70 

-5 -4 -3 -2 -1 0 1 2 

3
rd

 G
ra

d
e 

R
ea

d
in

g
 T

es
t 

S
co

re
s 

(N
C

E
s)

 

RELATIVE YEAR (Last Baseline = 0) 

DD and CITS Designs in Educational Evaluation 

 

Figure 5-1 

 

Reading Test Score Trends for RF Schools and Prescreened Comparison Groups 

RF Schools (N=69) 

State (N=611) 

Eligible (N=419) 

Applicants (N=99) 

Reading First Begins 
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Figure 5-2 
 

Reading Test Score Trends for RF Schools and  
Matched Comparison Groups 

RF Schools (N=69) 

Nearest Neighbor (N=62) 

NN w/out Replacement (N=69) 

Radius (N=369) 

Radius w/ Demographics (N=324) 
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B. Matched Groups for DD Design 

RF Schools (N=69) 

Nearest Neighbor (N=58) 

NN w/out Replacement (N=69) 

Radius (N=363) 

Radius w/ Demographics (N=260) 

Reading First Begins 

A. Matched Groups for CITS Design 
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Figure 5-3 

    

 Estimated Impact on Reading Scores by Comparison Group, CITS design 

(N = Number of comparison schools; SE = standard error, p = p-value)  



-0.026 

0.019 0.012 0.012 

-0.012 -0.009 
-0.031 

0.004 

-0.20 

-0.15 

-0.10 

-0.05 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

RD Design 

(N=99; 

SE=0.075; 

p=0.725) 

State (N=611; 

SE=0.029; 

p=0.523) 

Eligible 

(N=419; 

SE=0.031; 

p=0.701) 

Applicants 

(N=99; 

SE=0.04; 

p=0.76) 

Nearest 

Neighbor 

(N=58; 

SE=0.046; 

p=0.795) 

NN w/out 

Replacement 

(N=69; 

SE=0.042; 

p=0.824) 

Radius 

(N=363; 

SE=0.023; 

p=0.177) 

Radius w/ 

Demographics 

(N=260; 

SE=0.027; 

p=0.895) 

E
ff

ec
t 

S
iz

e
 

Year 1 

0.057 0.059 
0.040 

-0.019 -0.026 
0.000 -0.012 -0.025 

-0.35 

-0.30 

-0.25 

-0.20 

-0.15 

-0.10 

-0.05 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

RD Design 

(N=99; 

SE=0.072; 

p=0.434) 

State (N=611; 

SE=0.029; 

p=0.043) 

Eligible 

(N=419; 

SE=0.031; 

p=0.197) 

Applicants 

(N=99; 

SE=0.04; 

p=0.639) 

Nearest 

Neighbor 

(N=58; 

SE=0.046; 

p=0.575) 

NN w/out 

Replacement 

(N=69; 

SE=0.042; 

p=0.991) 

Radius 

(N=363; 

SE=0.023; 

p=0.588) 

Radius w/ 

Demographics 

(N=260; 

SE=0.027; 

p=0.352) 

E
ff

ec
t 

S
iz

e
 

Year 2  

DD and CITS Designs in Educational Evaluation 

 

Figure 5-4 

 

Estimated Impact on Reading Scores by Comparison Group, DD design 

(N = Number of comparison schools; SE = standard error, p = p-value)  



Bootstrap Bootstrap Bootstrap

Estimated Standard Bootstrap Lower Upper

Comparison Group Bias Error p-value 95% CI 95% CI

CITS Design - Year 1

State 0.034 0.074 0.671 -0.178 0.115

Eligible 0.030 0.074 0.718 -0.169 0.121

Applicants 0.026 0.077 0.753 -0.171 0.125

Nearest Neighbor -0.009 0.084 0.969 -0.155 0.175

NN w/out Replacement 0.009 0.076 0.973 -0.145 0.159

Radius 0.004 0.072 0.952 -0.137 0.151

Radius w/ Demographics 0.006 0.110 0.909 -0.228 0.200

CITS Design - Year 2

State -0.008 0.071 0.897 -0.134 0.159

Eligible -0.023 0.071 0.724 -0.115 0.173

Applicants -0.088 0.073 0.222 -0.062 0.233

Nearest Neighbor -0.094 0.084 0.378 -0.106 0.238

NN w/out Replacement -0.107 0.072 0.287 -0.063 0.213

Radius -0.064 0.068 0.268 -0.061 0.215

Radius w/ Demographics -0.088 0.099 0.377 -0.110 0.289

DD Design - Year 1

State 0.045 0.070 0.544 -0.183 0.103

Eligible 0.038 0.071 0.611 -0.174 0.109

Applicants 0.039 0.073 0.613 -0.178 0.110

Nearest Neighbor 0.015 0.081 1.000 -0.157 0.161

NN w/out Replacement 0.017 0.074 0.968 -0.133 0.151

Radius -0.005 0.072 0.982 -0.142 0.153

Radius w/ Demographics 0.030 0.078 0.972 -0.156 0.157

DD Design - Year 2

State 0.003 0.065 0.979 -0.128 0.128

Eligible -0.016 0.064 0.782 -0.112 0.145

Applicants -0.075 0.064 0.232 -0.054 0.198

Nearest Neighbor -0.082 0.073 0.347 -0.072 0.223

NN w/out Replacement -0.057 0.066 0.303 -0.063 0.194

Radius -0.069 0.064 0.291 -0.059 0.191

Radius w/ Demographics -0.081 0.072 0.238 -0.058 0.224

(continued)
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Table 5-1

Estimated Bias (in Effect Size) for Impact on Reading Scores, by Design and 

Comparison Group



NOTES: The estimated bias is equal to the estimated impact based on the relevant comparison group minus the 

estimated impact from the RD design, using the actual data.  The standard error, p-value, and confidence 

intervals for the bias are obtained using bias estimates from bootstrapped samples (1000 iterations). The 

standard error is the standard deviation of bias estimates across iterations. The p-value is obtained by assuming 

that the distribution for bias is normally distributed. The confidence intervals are the 2.5th and 97.5th 

percentiles of the bias estimates across iterations. All bias estimates, standard errors, and confidence intervals 

are shown in effect size based on a standard deviation of 21.06, which is the student-level standard deviation for 

scores in NCEs. 

Table 5-1 (continued)
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Figure 5-5 

 

Math Test Score Trends for RF Schools and Prescreened Comparison Groups 

RF Schools (N=69) 

State (N=611) 

Eligible (N=419) 

Applicants (N=99) 
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Figure 5-6 
 

Math Test Score Trends for RF Schools and  
Matched Comparison Groups 

RF Schools (N=69) 
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B. Matched Groups for DD Design 
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Radius w/ Demographics (N=350) 

Reading First Begins 

A. Matched Groups for CITS Design 
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Figure 5-7 

 

Estimated Impact on Math Scores by Comparison Group, CITS design 

(N = Number of comparison schools; SE = standard error, p = p-value)  
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Figure 5-8 

 

Estimated Impact on Math Scores by Comparison Group, DD design 

(N = Number of comparison schools; SE = standard error, p = p-value)  



Bootstrap Bootstrap Bootstrap

Estimated Standard Bootstrap Lower Upper

Comparison Group Bias Error p-value 95% CI 95% CI

CITS Design - Year 1

State 0.021 0.092 0.840 -0.200 0.160

Eligible 0.021 0.093 0.834 -0.201 0.162

Applicants -0.003 0.094 0.966 -0.191 0.185

Nearest Neighbor -0.006 0.102 0.973 -0.187 0.200

NN w/out Replacement 0.010 0.094 0.957 -0.177 0.195

Radius 0.002 0.090 0.983 -0.179 0.181

Radius w/ Demographics 0.045 0.125 0.851 -0.264 0.235

CITS Design - Year 2

State -0.010 0.080 0.895 -0.144 0.166

Eligible -0.019 0.081 0.796 -0.138 0.182

Applicants -0.072 0.087 0.405 -0.100 0.246

Nearest Neighbor -0.065 0.092 0.343 -0.091 0.277

NN w/out Replacement -0.056 0.079 0.259 -0.063 0.246

Radius -0.086 0.073 0.227 -0.061 0.231

Radius w/ Demographics -0.111 0.138 0.386 -0.146 0.412

DD Design - Year 1

State 0.025 0.088 0.797 -0.198 0.150

Eligible 0.022 0.089 0.822 -0.193 0.150

Applicants 0.001 0.088 0.999 -0.170 0.170

Nearest Neighbor -0.001 0.099 0.999 -0.202 0.191

NN w/out Replacement 0.000 0.094 0.991 -0.182 0.183

Radius 0.003 0.089 0.979 -0.173 0.173

Radius w/ Demographics -0.012 0.091 0.919 -0.171 0.184

DD Design - Year 2

State -0.008 0.073 0.897 -0.133 0.153

Eligible -0.024 0.073 0.724 -0.114 0.169

Applicants -0.072 0.073 0.319 -0.066 0.219

Nearest Neighbor -0.095 0.082 0.269 -0.067 0.250

NN w/out Replacement -0.097 0.075 0.217 -0.055 0.237

Radius -0.091 0.069 0.179 -0.044 0.229

Radius w/ Demographics -0.117 0.075 0.090 -0.027 0.274

(continued)

DD and CITS Designs in Educational Evaluation

Table 5-2

Estimated Bias (in Effects Size) for Impact on Math Scores, by Design and 

Comparison Group



NOTES: The estimated bias is equal to the estimated impact based on the relevant comparison group 

minus the estimated impact from the RD design, using the actual data.  The standard error, p-value, and 

confidence intervals for the bias are obtained using bias estimates from bootstrapped samples (1000 

iterations). The standard error is the standard deviation of bias estimates across iterations. The p-value is 

obtained by assuming that the distribution for bias is normally distributed. The confidence intervals are 

the 2.5th and 97.5th percentiles of the bias estimates across iterations. All bias estimates, standard errors, 

and confidence intervals are shown in effect size based on a standard deviation of 21.06, which is the 

student-level standard deviation for scores in NCEs. 

Table 5-2 (continued)



Predicted value Predicted value

at cut-off for at cut-off for Estimated

Reading First Non-RF Estimated difference in

School Characteristic schools schools difference effect size p-value

Percent of schools that are urban 32.38 35.36 -2.99 -0.06 0.784

Last Baseline Year

Reading test scores 52.45 53.48 -1.03 -0.15 0.497

Math test scores 53.44 54.79 -1.34 -0.18 0.421

Enrollment 370.28 393.08 -22.79 -0.14 0.513

Free/reduced-price lunch (%) 67.28 66.69 0.59 0.03 0.880

Racial/ethnic composition

  White (%) 82.47 85.58 -3.11 -0.16 0.500

  Hispanic (%) 2.34 1.75 0.59 0.16 0.343

  Black (%) 14.34 11.77 2.57 0.16 0.535

  Other (%) 2.34 1.75 0.59 0.16 0.343

Number of 3rd grade students 56.22 61.34 -5.12 -0.18 0.439

3rd graders who are female (%) 47.57 47.53 0.04 0.01 0.972

Children in poverty in district (%) 22.97 23.35 -0.38 -0.05 0.821

Pupil-teacher ratio 14.51 14.22 0.28 0.12 0.595

Year 1

Enrollment 366.19 397.75 -31.56 -0.20 0.354

Free/reduced-price lunch (%) 69.39 67.25 2.15 0.10 0.556

Racial/ethnic composition

  White (%) 82.00 85.12 -3.13 -0.17 0.505

  Hispanic (%) 2.81 2.01 0.80 0.21 0.299

  Black (%) 14.47 11.97 2.50 0.15 0.544

  Other (%) 2.81 2.01 0.80 0.21 0.299

Number of 3rd grade students 56.07 60.17 -4.10 -0.14 0.518

3rd graders who are female (%) 46.85 48.21 -1.36 -0.29 0.235

Children in poverty in district (%) 24.71 25.88 -1.17 -0.17 0.612

Pupil-teacher ratio 13.64 14.28 -0.64 -0.26 0.208

Year 2

Enrollment 366.92 394.12 -27.20 -0.17 0.424

Free/reduced-price lunch (%) 77.38 76.30 1.07 0.05 0.785

Racial/ethnic composition

  White (%) 81.32 85.37 -4.04 -0.21 0.398

  Hispanic (%) 2.95 2.46 0.48 0.13 0.557

  Black (%) 14.84 11.47 3.38 0.21 0.416

  Other (%) 2.95 2.46 0.48 0.13 0.557

Number of 3rd grade students 55.81 61.07 -5.26 -0.18 0.413

3rd graders who are female (%) 47.44 47.08 0.36 0.08 0.745

Children in poverty in district (%) 24.72 25.37 -0.65 -0.09 0.752

Pupil-teacher ratio 13.35 13.96 -0.61 -0.25 0.254

Number of schools 69 99

(continued)
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Table A-1

Impact on School Characteristics, RD Design



NOTES: Statistical tests are of the difference between treatment schools and comparison schools. Effects 

sizes are calculated using the school-level standard deviation of the characteristics based on all schools in 

RF-eligible districts in the last baseline year (including both RF schools and non-RF schools).

Table A-1 (continued)



Estimated Standard Lower Upper

Model Covariates (in addition to Treatment indicator) Impact Error p-value 95% CI 95% CI

Impact on Reading Scores

Year 1

Ratinga -0.026 0.075 0.725 -0.174 0.122

Rating + Rating*Treatment -0.041 0.082 0.615 -0.204 0.121

Rating + Rating2 -0.016 0.089 0.855 -0.193 0.160

Rating + Rating2 + Rating*Treatment + Rating2*Treatment 0.130 0.110 0.241 -0.088 0.347

Year 2

Ratinga 0.057 0.072 0.434 -0.086 0.199

Rating + Rating*Treatment 0.019 0.086 0.828 -0.150 0.187

Rating + Rating2 0.025 0.096 0.798 -0.165 0.214

Rating + Rating2 + Rating*Treatment + Rating2*Treatment 0.150 0.126 0.235 -0.099 0.399

Impact on Math Scores

Year 1

Ratinga -0.058 0.095 0.540 -0.246 0.129

Rating + Rating*Treatment -0.091 0.097 0.346 -0.282 0.099

Rating + Rating2 -0.069 0.103 0.507 -0.272 0.135

Rating + Rating2 + Rating*Treatment + Rating2*Treatment 0.074 0.130 0.573 -0.184 0.331

Year 2

Ratinga -0.010 0.077 0.896 -0.161 0.141

Rating + Rating*Treatment -0.065 0.088 0.460 -0.239 0.109

Rating + Rating2 -0.081 0.097 0.402 -0.272 0.109

Rating + Rating2 + Rating*Treatment + Rating2*Treatment 0.031 0.127 0.808 -0.220 0.281

NOTES: All estimates are in effect size based on on a standard deviation of 21.06, which is the student-level 

standard deviation for scores in NCEs. The model used to estimate impacts includes a treatment group indicator 

and the variables listed in column 1. The rating variable is centered at the cut-off (145) in all models. 

aModel used to obtain the causal benchmark.

DD and CITS Designs in Educational Evaluation

Table A-2

Estimated Impact on Test Scores (in Effect Size), by RDD Model Specification



Estimated Estimated

Slope Slope Estimated Standard 

Subject -Year RF Schools Non-RF Schools Difference Error p-value

Reading Scores

Year 1 0.043 0.000 0.042 0.086 0.625

Year 2 0.045 -0.062 0.107 0.090 0.237

Math Scores

Year 1 0.062 -0.032 0.093 0.097 0.337

Year 2 0.082 -0.074 0.156 0.093 0.094

Number of Schools 69 99

NOTES: Slopes are scaled in normal curve equivalents (NCEs). Rounding may cause slight 

discrepancies in calculating differences. The statistical model used to estimate slopes includes the 

treatment indicator, the rating variable centered on the cut-off of 145, and the interaction between the 

treatment indicator and the centered rating. The coefficient on the interaction term (in the "Estimated 

Difference" column) is the difference between the slopes of the RF and non-RF group.

DD and CITS Designs in Educational Evaluation

Table A-3

Relationship between Test Scores (in NCEs) and Ratings, for RF and 

non-RF Schools



RF

School Characteristic schools State Eligible Applicants

Baseline math test scores

Predicted score in last baseline year 53.54 58.97 57.84 54.29

(0.72) X (0.57) X (0.1)

Baseline trend (6 years) 1.54 1.61 1.66 1.64

(0.05) (0.08) (0.07)

Demographic Characteristics (Last Baseline Year)

Percent of schools that are urban 37.68 34.26 35.80 22.22

(-0.07) (-0.04) (-0.32) X

Enrollment 382.61 409.56 400.13 362.55

(0.17) (0.11) (-0.13)

Free/reduced-price lunch (%) 65.64 53.96 57.97 70.73

(-0.56) X (-0.37) X (0.24)

Racial/ethnic composition

  White (%) 81.35 88.31 85.73 88.36

(0.37) X (0.23) (0.37) X

  Hispanic (%) 2.50 1.60 1.68 1.35

(-0.24) (-0.22) (-0.31) X

  Black (%) 15.17 9.16 11.54 9.70

(-0.37) X (-0.22) (-0.33) X

  Other (%) 2.50 1.60 1.68 1.35

(-0.24) (-0.22) (-0.31) X

Number of 3rd grade students 59.97 62.89 60.59 52.04

(0.1) (0.02) (-0.28) X

3rd graders who are female (%) 47.91 47.48 47.56 46.69

(-0.09) (-0.08) (-0.26) X

Children in poverty in district (%) 22.00 20.66 22.45 25.75

(-0.19) (0.06) (0.54) X

Pupil-teacher ratio 14.47 15.57 15.40 14.32

(0.45) X (0.38) X (-0.06)

Number of schools 69 611 419 99

NOTES: Values shown in parentheses are the difference between RF and comparison schools in effect 

size. Effects sizes are calculated using the school-level standard deviation based on all schools in RF-

eligible districts in the last baseline year (including both RF schools and non-RF schools). Differences 

greater than 0.25 SD are indicated with an "X". Statistical tests of the difference between Reading First 

schools and comparison schools are not shown, because the precision of the estimated difference varies 

across the comparison groups (for a given effect size, larger comparison groups are more likely to be 

deemed statistically different from RF schools).

Comparison Groups

DD and CITS Designs in Educational Evaluation

Table C-1

Characteristics of Reading First Schools and Prescreened Comparison Groups 

(for Impacts on Math Scores)



RF Nearest NN w/out Radius w/

School Characteristic Schools Neighbor Replacement Radius Demographics

Propensity score (logit scale) -1.507 -1.516 -1.520 -1.518 -1.712

(-0.01) (-0.02) (-0.01) (-0.06)

Baseline math test scores

Predicted score in last baseline year 53.54 53.91 53.41 55.63 56.27

(0.05) (-0.02) (0.28) X (0.36) X

Baseline trend (6 years) 1.54 1.47 1.58 1.57 1.57

(-0.05) (0.03) (0.02) (0.02)

Demographic Characteristics (Last Baseline Year)

Percent of schools that are urban 37.68 47.83 46.38 43.48 34.33

(0.21) (0.18) (0.12) (-0.07)

Enrollment 382.61 390.25 378.70 380.77 380.98

(0.05) (-0.02) (-0.01) (-0.01)

Free/reduced-price lunch (%) 65.64 63.97 64.73 65.49 68.00

(-0.08) (-0.04) (-0.01) (0.11)

Racial/ethnic composition

  White (%) 81.35 83.49 83.70 81.48 82.67

(0.11) (0.12) (0.01) (0.07)

  Hispanic (%) 2.50 1.90 1.90 2.02 1.58

(-0.16) (-0.16) (-0.13) (-0.25)

  Black (%) 15.17 13.74 13.48 15.51 14.89

(-0.09) (-0.1) (0.02) (-0.02)

  Other (%) 2.50 1.90 1.90 2.02 1.58

(-0.16) (-0.16) (-0.13) (-0.25)

Number of 3rd grade students 59.97 57.97 55.81 56.87 58.37

(-0.07) (-0.15) (-0.11) (-0.06)

3rd graders who are female (%) 47.91 47.87 47.41 47.38 48.21

(-0.01) (-0.11) (-0.11) (0.06)

Children in poverty in district (%) 22.00 23.66 23.49 22.85 22.56

(0.24) (0.21) (0.12) (0.08)

Pupil-teacher ratio 14.47 15.13 14.97 14.96 14.41

(0.27) X (0.2) (0.2) (-0.03)

Number of schools 69 59 69 349 323

NOTES: Values shown in parentheses are the difference between RF and comparison schools in effect size. Effects 

sizes are calculated using the school-level standard deviation based on all schools in RF-eligible districts in the last 

baseline year (including both RF schools and non-RF schools). Differences greater than 0.25 SD are indicated with 

an "X". Statistical tests of the difference between Reading First schools and comparison schools are not shown, 

because the precision of the estimated difference varies across the comparison groups (for a given effect size, 

larger comparison groups are more likely to be deemed statistically different from RF schools).

Comparison Groups

Characteristics of Reading First Schools and CITS Matched Comparison Groups (for 

Impacts on Math Scores)

Table C-2

DD and CITS Designs in Educational Evaluation



RF Nearest NN w/out Radius w/

School Characteristic Schools Neighbor Replacement Radius Demographics

Propensity score (logit scale) -1.558 -1.561 -1.561 -1.565 -1.654

(-0.004) (-0.004) (-0.01) (-0.04)

Baseline math test scores

Predicted score in last baseline year 53.54 53.46 53.34 55.03 55.46

(-0.01) (-0.03) (0.2) (0.25) X

Baseline trend (6 years) 1.54 1.40 1.32 1.42 1.38

(-0.11) (-0.16) (-0.09) (-0.12)

Demographic Characteristics (Last Baseline Year)

Percent of schools that are urban 37.68 52.17 52.17 42.09 35.33

(0.3) X (0.3) X (0.09) (-0.05)

Enrollment 382.61 423.77 419.96 390.62 377.65

(0.26) X (0.23) (0.05) (-0.03)

Free/reduced-price lunch (%) 65.64 60.95 60.53 64.25 65.52

(-0.23) (-0.25) (-0.07) (-0.01)

Racial/ethnic composition

  White (%) 81.35 83.75 82.36 82.17 82.66

(0.13) (0.05) (0.04) (0.07)

  Hispanic (%) 2.50 2.06 2.23 1.95 2.13

(-0.12) (-0.07) (-0.15) (-0.1)

  Black (%) 15.17 13.28 14.45 14.94 14.31

(-0.12) (-0.04) (-0.01) (-0.05)

  Other (%) 2.50 2.06 2.23 1.95 2.13

(-0.12) (-0.07) (-0.15) (-0.1)

Number of 3rd grade students 59.97 66.62 65.43 58.13 58.17

(0.23) (0.19) (-0.06) (-0.06)

3rd graders who are female (%) 47.91 46.83 46.94 47.02 48.28

(-0.23) (-0.21) (-0.19) (0.08)

Children in poverty in district (%) 22.00 21.29 21.26 22.90 22.14

(-0.1) (-0.11) (0.13) (0.02)

Pupil-teacher ratio 14.47 15.31 15.29 15.12 14.50

(0.34) X (0.33) X (0.26) X (0.01)

Number of schools 69 65 69 346 350

NOTES: Values shown in parentheses are the difference between RF and comparison schools in effect size. 

Effects sizes are calculated using the school-level standard deviation based on all schools in RF-eligible districts 

in the last baseline year (including both RF schools and non-RF schools). Differences greater than 0.25 SD are 

indicated with an "X". Statistical tests of the difference between Reading First schools and comparison schools 

are not shown, because the precision of the estimated difference varies across the comparison groups (for a given 

effect size, larger comparison groups are more likely to be deemed statistically different from RF schools).

Comparison Groups
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Table C-3

Characteristics of Reading First Schools and DD Matched Comparison Groups (for 

Impacts on Math Scores)



CITS CITS CITS DD DD DD

Appli- Nearest NN w/out CITS Radius w/ Nearest NN w/out DD Radius

Among schools in the following State Eligible cants Neighbor repl. Radius demo. Neighbor repl. Radiusw/ demo.

comparison groups… (N) (611) (419) (99) (62) (69) (369) (324) (58) (69) (363) (260)

State (611) 100% 69% 16% 10% 11% 60% 53% 9% 11% 59% 43%

Eligible (419) 100% 100% 24% 15% 16% 88% 77% 14% 16% 87% 62%

Applicants (99) 100% 100% 100% 17% 20% 91% 85% 21% 24% 94% 71%

CITS - Nearest Neighbor (62) 100% 100% 27% 100% 94% 100% 84% 19% 23% 97% 71%

CITS - NN w/out Replacement (69) 100% 100% 29% 84% 100% 97% 84% 22% 23% 94% 74%

CITS - Radius (369) 100% 100% 24% 17% 18% 100% 82% 15% 18% 94% 68%

CITS - Radius, w/demographics (324) 100% 100% 26% 16% 18% 94% 100% 15% 18% 91% 72%

DD - Nearest Neighbor (58) 100% 100% 36% 21% 26% 93% 81% 100% 91% 100% 76%

DD - NN w/out Replacement (69) 100% 100% 35% 20% 23% 94% 83% 77% 100% 100% 75%

DD - Radius (363) 100% 100% 26% 17% 18% 95% 81% 16% 19% 100% 69%

DD - Radius, w/demographics (260) 100% 100% 27% 17% 20% 97% 90% 17% 20% 96% 100%

… % that are also in …

NOTES: Value in (Row X, Column Y) = Percentage of schools in the comparison group in Row X that are also part of the comparison group in Column Y. 

(N) = Sample size of comparison group

DD and CITS Designs in Educational Evaluation

Table C-4

Overlap Between Comparison Groups (for Impacts on Reading)



CITS CITS CITS DD DD DD

Appli- Nearest NN w/out CITS Radius w/ Nearest NN w/out DD Radius w/

Among schools in the following State Eligible cants Neighbor repl. Radius demo. Neighbor repl. Radius demo.

comparison groups… (N) (611) (419) (99) (59) (69) (349) (323) (65) (69) (346) (350)

State (611) 100% 69% 16% 10% 11% 57% 53% 11% 11% 57% 57%

Eligible (419) 100% 100% 24% 14% 16% 83% 77% 16% 16% 83% 84%

Applicants (99) 100% 100% 100% 19% 22% 92% 83% 16% 17% 92% 94%

CITS - Nearest Neighbor (59) 100% 100% 32% 100% 93% 100% 85% 24% 27% 98% 93%

CITS - NN w/out Replacement (69) 100% 100% 32% 80% 100% 99% 83% 25% 28% 99% 93%

CITS - Radius (349) 100% 100% 26% 17% 19% 100% 82% 18% 19% 95% 91%

CITS - Radius, w/demographics (323) 100% 100% 25% 15% 18% 89% 100% 17% 18% 87% 93%

DD - Nearest Neighbor (65) 100% 100% 25% 22% 26% 98% 85% 100% 92% 100% 94%

DD - NN w/out Replacement (69) 100% 100% 25% 23% 28% 99% 83% 87% 100% 100% 96%

DD - Radius (346) 100% 100% 26% 17% 20% 96% 82% 19% 20% 100% 91%

DD - Radius, w/demographics (350) 100% 100% 27% 16% 18% 91% 86% 17% 19% 90% 100%

NOTES: Value in (Row X, Column Y) = Percentage of schools in the comparison group in Row X that are also part of the comparison group in Column Y.

(N) = Sample size of comparison group

… % that are also in …

Overlap Between Comparison Groups (for Impacts on Math)

Table C-5

DD and CITS Designs in Educational Evaluation



Estimated

RF Comparison difference Standard

Comparison Group Schools Schools or impact Error p-value

Baseline Trend

State 1.244 1.256 -0.012 0.142 0.931

Eligible 1.244 1.285 -0.041 0.151 0.787

Applicants 1.244 1.234 0.010 0.195 0.961

Nearest Neighbor 1.244 1.137 0.106 0.210 0.613

Nearest Neighbor w/out Replacement 1.244 1.161 0.082 0.205 0.688

Radius 1.244 1.207 0.037 0.127 0.773

Radius w/ Demographics 1.244 1.226 0.018 0.137 0.897

Predicted Score in Last Baseline Year

State 52.745 57.692 -4.947 0.771 0.000

Eligible 52.745 56.513 -3.767 0.792 0.000

Applicants 52.745 53.070 -0.324 0.843 0.701

Nearest Neighbor 52.745 53.500 -0.754 0.981 0.443

Nearest Neighbor w/out Replacement 52.745 53.048 -0.303 0.975 0.756

Radius 52.745 55.075 -2.329 0.682 0.001

Radius w/ Demographics 52.745 55.001 -2.256 0.714 0.002

Deviation from Baseline Trend - Year 1

State -0.580 -0.744 0.164 0.681 0.810

Eligible -0.580 -0.650 0.069 0.721 0.923

Applicants -0.580 -0.581 0.000 0.938 1.000

Nearest Neighbor -0.580 0.162 -0.742 1.006 0.461

Nearest Neighbor w/out Replacement -0.580 -0.220 -0.360 0.972 0.711

Radius -0.580 -0.099 -0.482 0.524 0.358

Radius w/ Demographics -0.580 -0.142 -0.439 0.542 0.419

Deviation from Baseline Trend - Year 2

State -4.549 -5.579 1.030 0.760 0.175

Eligible -4.549 -5.255 0.706 0.804 0.380

Applicants -4.549 -3.884 -0.665 1.046 0.525

Nearest Neighbor -4.549 -3.756 -0.793 1.122 0.480

Nearest Neighbor w/out Replacement -4.549 -3.476 -1.073 1.084 0.322

Radius -4.549 -4.386 -0.163 0.585 0.781

Radius w/ Demographics -4.549 -3.884 -0.665 0.605 0.272

NOTES: Impacts and standard errors are expressed in normal curve equivalents (NCEs).

Model Estimates for Impact on Reading Scores by Comparison Group, CITS 

Design

Table D-1

DD and CITS Designs in Educational Evaluation



Estimated

RF Comparison difference or Standard

Comparison Group Schools Schools impact error p-value

Baseline Mean

State 56.413 51.222 5.190 0.750 0.000

Eligible 55.213 51.222 3.991 0.769 0.000

Applicants 51.796 51.222 0.573 0.813 0.482

Nearest Neighbor 51.819 51.222 0.596 0.979 0.544

Nearest Neighbor w/out Replacement 51.321 51.222 0.099 0.942 0.916

Radius 53.115 51.222 1.893 0.619 0.002

Radius w/ Demographics 53.078 51.222 1.856 0.660 0.005

Deviation from Baseline Mean - Year 1

State 2.186 1.792 0.395 0.617 0.523

Eligible 2.186 1.934 0.252 0.658 0.701

Applicants 2.186 1.928 0.259 0.845 0.760

Nearest Neighbor 2.186 2.436 -0.250 0.958 0.795

Nearest Neighbor w/out Replacement 2.186 2.383 -0.197 0.885 0.824

Radius 2.186 2.839 -0.652 0.483 0.177

Radius w/ Demographics 2.186 2.112 0.074 0.564 0.895

Deviation from Baseline Mean - Year 2

State -0.538 -1.787 1.249 0.617 0.043

Eligible -0.538 -1.386 0.848 0.658 0.197

Applicants -0.538 -0.141 -0.397 0.845 0.639

Nearest Neighbor -0.538 0.000 -0.538 0.958 0.575

Nearest Neighbor w/out Replacement -0.538 -0.529 -0.010 0.885 0.991

Radius -0.538 -0.276 -0.262 0.483 0.588

Radius w/ Demographics -0.538 -0.013 -0.525 0.564 0.352

Model Estimates for Impact on Reading Scores by Comparison Group, DD Design

NOTES: Impacts and standard errors are expressed in normal curve equivalents (NCEs).

DD and CITS Designs in Educational Evaluation

Table D-2



Estimated

RF Comparison difference Standard

Comparison Group Schools Schools or impact Error p-value

Baseline Trend

State 1.544 1.608 -0.063 0.161 0.693

Eligible 1.544 1.656 -0.112 0.171 0.513

Applicants 1.544 1.643 -0.099 0.212 0.641

Nearest Neighbor 1.544 1.472 0.072 0.237 0.762

Nearest Neighbor w/out Replacement 1.544 1.582 -0.038 0.225 0.865

Radius 1.544 1.571 -0.027 0.144 0.850

Radius w/ Demographics 1.544 1.571 -0.027 0.152 0.860

Predicted Score in Last Baseline Year

State 53.541 58.970 -5.430 0.841 0.000

Eligible 53.541 57.835 -4.294 0.865 0.000

Applicants 53.541 54.289 -0.748 0.917 0.416

Nearest Neighbor 53.541 53.915 -0.374 1.049 0.722

Nearest Neighbor w/out Replacement 53.541 53.411 0.129 1.018 0.899

Radius 53.541 55.629 -2.089 0.718 0.004

Radius w/ Demographics 53.541 56.267 -2.727 0.756 0.000

Deviation from Baseline Trend - Year 1

State -1.654 -0.859 -0.795 0.749 0.289

Eligible -1.654 -0.878 -0.776 0.793 0.328

Applicants -1.654 -0.370 -1.284 1.018 0.207

Nearest Neighbor -1.654 -0.306 -1.348 1.042 0.196

Nearest Neighbor w/out Replacement -1.654 -0.636 -1.019 1.007 0.312

Radius -1.654 -0.461 -1.194 0.564 0.034

Radius w/ Demographics -1.654 -1.384 -0.271 0.585 0.644

Deviation from Baseline Trend - Year 2

State -4.178 -3.766 -0.412 0.836 0.622

Eligible -4.178 -3.559 -0.619 0.885 0.484

Applicants -4.178 -2.457 -1.721 1.136 0.130

Nearest Neighbor -4.178 -2.598 -1.580 1.162 0.175

Nearest Neighbor w/out Replacement -4.178 -2.782 -1.396 1.124 0.214

Radius -4.178 -2.160 -2.018 0.630 0.001

Radius w/ Demographics -4.178 -1.620 -2.558 0.653 0.000

NOTES: Impacts and standard errors are expressed in normal curve equivalents (NCEs).

Model Estimates for Impact on Math Scores by Comparison Group, CITS 

Design

Table D-3

DD and CITS Designs in Educational Evaluation



Estimated

RF Comparison difference or Standard

Comparison Group Schools Schools impact error p-value

Baseline Mean

State 51.744 57.322 -5.578 0.821 0.000

Eligible 51.744 56.157 -4.413 0.843 0.000

Applicants 51.744 52.674 -0.930 0.886 0.296

Nearest Neighbor 51.744 51.924 -0.180 0.973 0.854

Nearest Neighbor w/out Replacement 51.744 51.836 -0.092 0.948 0.923

Radius 51.744 53.336 -1.592 0.658 0.016

Radius w/ Demographics 51.744 53.736 -1.992 0.690 0.004

Deviation from Baseline Mean - Year 1

State 1.686 2.396 -0.710 0.691 0.304

Eligible 1.686 2.456 -0.770 0.732 0.293

Applicants 1.686 2.888 -1.201 0.922 0.193

Nearest Neighbor 1.686 2.937 -1.251 0.906 0.168

Nearest Neighbor w/out Replacement 1.686 2.906 -1.220 0.898 0.175

Radius 1.686 2.855 -1.169 0.530 0.028

Radius w/ Demographics 1.686 3.167 -1.481 0.532 0.005

Deviation from Baseline Mean - Year 2

State 0.707 1.097 -0.390 0.691 0.572

Eligible 0.707 1.431 -0.724 0.732 0.323

Applicants 0.707 2.444 -1.737 0.922 0.060

Nearest Neighbor 0.707 2.917 -2.210 0.906 0.015

Nearest Neighbor w/out Replacement 0.707 2.956 -2.249 0.898 0.013

Radius 0.707 2.829 -2.122 0.530 0.000

Radius w/ Demographics 0.707 3.384 -2.677 0.532 0.000

NOTES: Impacts and standard errors are expressed in normal curve equivalents (NCEs).

DD and CITS Designs in Educational Evaluation

Table D-4

Model Estimates for Impact on Math Scores by Comparison Group, DD Design



CITS CITS CITS CITS CITS CITS CITS DD DD DD DD DD DD DD

(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)

0.004 0.008 0.043 0.025 0.031 0.029 -0.011 -- -- -- -- -- --

(0.497) (0.796) (0.517) (0.382) (0.200) (0.824) (0.461)

0.003 0.039 0.020 0.026 0.024 -- -0.009 -- -- -- -- --

(0.924) (0.577) (0.452) (0.259) (0.866) (0.565)

0.035 0.017 0.023 0.021 -- -- -0.012 -- -- -- --

(0.647) (0.567) (0.445) (0.896) (0.511)

-0.018 -0.012 -0.014 -- -- -- -0.023 -- -- --

(0.985) (0.982) (0.868) (0.961)

0.006 0.004 -- -- -- -- -0.008 -- --

(0.957) (0.864) (0.993)

-0.002 -- -- -- -- -- 0.008 --

(0.841) (0.819)

-- -- -- -- -- -- -0.024

(0.911)

0.007 0.006 0.031 0.028 0.050 0.015

(0.268) (0.809) (0.364) (0.167) (0.055) (0.308)

0.000 0.024 0.021 0.043 0.008

(0.968) (0.448) (0.243) (0.102) (0.396)

0.024 0.022 0.043 0.009

(0.486) (0.315) (0.239) (0.459)

-0.003 0.019 -0.015

(0.934) (0.968) (0.961)

0.022 -0.013

(0.876) (0.904)

-0.035

(0.978)

(continued)

CITS (3) - Applicants

CITS (4) - Nearest 

Neighbor

CITS (5) - NN w/out 

replacement

CITS (6) - Radius

CITS (7) - Radius w/ 

demographics

DD (6) - Radius

DD (5) - NN w/out 

replacement

DD (4) - Nearest 

Neighbor 

DD (3) - Applicants

DD (2) - Eligible

DD (1) - State

Difference Between CITS and DD Impact Estimates for Reading, Year 1

Table E-1

DD and CITS Designs in Educational Evaluation

Study Design - 

Comparison Set

CITS (1) - State

CITS (2) - Eligible

DD (7) - Radius w/ 

demographics



Table E-1 (continued)

-- Not applicable because both the study design and the comparison group selection method are different.

NOTES: The value in the first row of each cell is the estimated difference (in effect size) between impact estimates based on the actual data. The 

difference in (Row X, Column Y)  is equal to the estimated impact based on the comparison group in (Row X) minus the estimated impact based 

on the group in (Column Y). Effect sizes are calculated using a standard deviation of 21.06, which is the student-level standard deviation for 

scores in NCEs.  The value in the second row of each cell is the p-value for the difference between impact estimates, based on bootstrapped 

samples (1000 iterations). 



CITS CITS CITS CITS CITS CITS CITS DD DD DD DD DD DD DD

(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)

0.015 0.081 0.087 0.100 0.057 0.080 -0.010 -- -- -- -- -- --

(0.032) (0.004) (0.302) (0.146) (0.097) (0.319) (0.623)

0.065 0.071 0.084 0.041 0.065 -- -0.007 -- -- -- -- --

(0.018) (0.439) (0.271) (0.214) (0.429) (0.748)

0.006 0.019 -0.024 0.000 -- -- -0.013 -- -- -- --

(0.832) (0.820) (0.770) (0.983) (0.637)

0.013 -0.030 -0.006 -- -- -- -0.012 -- -- --

(0.955) (0.988) (0.889) (0.930)

-0.043 -0.019 -- -- -- -- -0.051 -- --

(0.965) (0.900) (0.859)

0.024 -- -- -- -- -- 0.005 --

(0.880) (0.791)

-- -- -- -- -- -- -0.007

(0.974)

0.019 0.078 0.085 0.060 0.072 0.084

(0.001) (0.000) (0.086) (0.022) (0.000) (0.030)

0.059 0.066 0.041 0.053 0.065

(0.004) (0.216) (0.097) (0.007) (0.094)

0.007 -0.018 -0.006 0.006

(0.863) (0.828) (0.745) (0.846)

-0.025 -0.013 -0.001

(0.996) (0.977) (0.757)

0.012 0.024

(0.964) (0.730)

0.012

(0.668)

(continued)

CITS (3) - Applicants

CITS (4) - Nearest 

Neighbor

CITS (5) - NN w/out 

replacement

CITS (6) - Radius

DD (7) - Radius w/ 

demographics

CITS (7) - Radius w/ 

demographics

DD (1) - State

DD (2) - Eligible

DD (3) - Applicants

DD (4) - Nearest 

Neighbor 

DD (5) - NN w/out 

replacement

DD and CITS Designs in Educational Evaluation

Table E-2

Difference Between CITS and DD Impact Estimates for Reading, Year 2

Study Design - 

Comparison Set

CITS (1) - State

CITS (2) - Eligible

DD (6) - Radius



Table E-2 (continued)

-- Not applicable because both the study design and the comparison group selection method are different.

NOTES: The value in the first row of each cell is the estimated difference (in effect size) between impact estimates based on the actual data. The 

difference in (Row X, Column Y)  is equal to the estimated impact based on the comparison group in (Row X) minus the estimated impact based 

on the group in (Column Y). Effect sizes are calculated using a standard deviation of 21.06, which is the student-level standard deviation for 

scores in NCEs.  The value in the second row of each cell is the p-value for the difference between impact estimates, based on bootstrapped 

samples (1000 iterations). 



CITS CITS CITS CITS CITS CITS CITS DD DD DD DD DD DD DD

(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)

-0.001 0.023 0.026 0.011 0.019 -0.025 -0.004 -- -- -- -- -- --

(0.911) (0.441) (0.700) (0.545) (0.458) (0.957) (0.808)

0.024 0.027 0.012 0.020 -0.024 -- 0.000 -- -- -- -- --

(0.402) (0.689) (0.530) (0.438) (0.965) (0.976)

0.003 -0.013 -0.004 -0.048 -- -- -0.004 -- -- -- --

(0.993) (0.983) (0.957) (0.777) (0.854)

-0.016 -0.007 -0.051 -- -- -- -0.005 -- -- --

(0.968) (0.975) (0.796) (0.959)

0.008 -0.036 -- -- -- -- 0.010 -- --

(0.925) (0.771) (0.930)

-0.044 -- -- -- -- -- -0.001 --

(0.784) (0.986)

-- -- -- -- -- -- 0.057

(0.725)

0.003 0.023 0.026 0.024 0.022 0.037

(0.665) (0.382) (0.608) (0.466) (0.140) (0.262)

0.020 0.023 0.021 0.019 0.034

(0.428) (0.656) (0.519) (0.180) (0.303)

0.002 0.001 -0.002 0.013

(1.000) (0.978) (0.935) (0.808)

-0.001 -0.004 0.011

(0.974) (0.955) (0.857)

-0.002 0.012

(0.966) (0.842)

0.015

(0.805)

(continued)

CITS (3) - Applicants

CITS (4) - Nearest 

Neighbor

CITS (5) - NN w/out 

replacement

CITS (6) - Radius

DD (7) - Radius w/ 

demographics

CITS (7) - Radius w/ 

demographics

DD (1) - State

DD (2) - Eligible

DD (3) - Applicants

DD (4) - Nearest 

Neighbor 

DD (5) - NN w/out 

replacement

Difference Between CITS and DD Impact Estimates for Math, Year 1

DD and CITS Designs in Educational Evaluation

Table E-3

Study Design - 

Comparison Set

CITS (1) - State

CITS (2) - Eligible

DD (6) - Radius



Table E-3 (continued)

-- Not applicable because both the study design and the comparison group selection method are different.

NOTES: The value in the first row of each cell is the estimated difference (in effect size) between impact estimates based on the actual data. The 

difference in (Row X, Column Y)  is equal to the estimated impact based on the comparison group in (Row X) minus the estimated impact based 

on the group in (Column Y). Effect sizes are calculated using a standard deviation of 21.06, which is the student-level standard deviation for 

scores in NCEs.  The value in the second row of each cell is the p-value for the difference between impact estimates, based on bootstrapped 

samples (1000 iterations). 



CITS CITS CITS CITS CITS CITS CITS DD DD DD DD DD DD DD

(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)

0.010 0.062 0.055 0.047 0.076 0.102 -0.001 -- -- -- -- -- --

(0.278) (0.066) (0.286) (0.133) (0.076) (0.394) (0.961)

0.052 0.046 0.037 0.066 0.092 -- 0.005 -- -- -- -- --

(0.108) (0.358) (0.195) (0.126) (0.440) (0.855)

-0.007 -0.015 0.014 0.040 -- -- 0.001 -- -- -- --

(0.848) (0.790) (0.772) (0.719) (0.987)

-0.009 0.021 0.046 -- -- -- 0.030 -- -- --

(0.981) (0.991) (0.816) (0.970)

0.030 0.055 -- -- -- -- 0.040 -- --

(0.990) (0.815) (0.942)

0.026 -- -- -- -- -- 0.005 --

(0.801) (0.864)

-- -- -- -- -- -- 0.006

(0.954)

0.016 0.064 0.086 0.088 0.082 0.109

(0.024) (0.009) (0.091) (0.015) (0.000) (0.002)

0.048 0.071 0.072 0.066 0.093

(0.047) (0.177) (0.050) (0.000) (0.008)

0.022 0.024 0.018 0.045

(0.736) (0.625) (0.480) (0.215)

0.002 -0.004 0.022

(0.954) (0.949) (0.529)

-0.006 0.020

(0.979) (0.462)

0.026

(0.362)

(continued)

CITS (3) - Applicants

CITS (4) - Nearest 

Neighbor

CITS (5) - NN w/out 

replacement

CITS (6) - Radius

DD (7) - Radius w/ 

demographics

CITS (7) - Radius w/ 

demographics

DD (1) - State

DD (2) - Eligible

DD (3) - Applicants

DD (4) - Nearest 

Neighbor 

DD (5) - NN w/out 

replacement

Difference Between CITS and DD Impact Estimates for Math, Year 2

DD and CITS Designs in Educational Evaluation

Table E-4

Study Design - 

Comparison Set

CITS (1) - State

CITS (2) - Eligible

DD (6) - Radius



Table E-4 (continued)

-- Not applicable because both the study design and the comparison group selection method are different.

NOTES: The value in the first row of each cell is the estimated difference (in effect size) between impact estimates based on the actual data. The 

difference in (Row X, Column Y)  is equal to the estimated impact based on the comparison group in (Row X) minus the estimated impact based 

on the group in (Column Y). Effect sizes are calculated using a standard deviation of 21.06, which is the student-level standard deviation for 

scores in NCEs.  The value in the second row of each cell is the p-value for the difference between impact estimates, based on bootstrapped 

samples (1000 iterations). 



Study Design - Comparison Group CITS (1) CITS (2) CITS (3) CITS (4) CITS (5) CITS (6) CITS (7) DD (1) DD (2) DD (3) DD (4) DD (4) DD (5) DD (6)

0.262 0.258 0.253 0.222 0.289 0.344 0.086 0.355 0.346 0.324 0.237 0.307 0.322 0.247

0.341 0.349 0.368 0.235 0.338 0.388 0.180 0.431 0.440 0.473 0.343 0.422 0.458 0.334

1.000 0.982 0.799 0.430 0.575 0.714 0.276 0.896 -- -- -- -- -- --

1.000 0.989 0.870 0.412 0.564 0.641 0.379 0.896

1.000 0.818 0.420 0.572 0.723 0.284 -- 0.894 -- -- -- -- --

1.000 0.881 0.409 0.564 0.640 0.379 0.893

1.000 0.344 0.477 0.611 0.211 -- -- 0.907 -- -- -- --

1.000 0.358 0.504 0.587 0.357 0.879

1.000 0.774 0.625 0.182 -- -- -- 0.316 -- -- --

1.000 0.750 0.653 0.234 0.313

1.000 0.734 0.244 -- -- -- -- 0.488 -- --

1.000 0.694 0.281 0.526

1.000 0.296 -- -- -- -- -- 0.754 --

1.000 0.320 0.752

1.000 -- -- -- -- -- -- 0.254

1.000 0.286

1.000 0.983 0.815 0.504 0.635 0.806 0.564

1.000 0.989 0.886 0.644 0.752 0.880 0.616

1.000 0.829 0.496 0.632 0.816 0.570

1.000 0.893 0.644 0.755 0.891 0.617

1.000 0.410 0.552 0.709 0.462

1.000 0.585 0.702 0.800 0.567

1.000 0.762 0.613 0.352

1.000 0.824 0.705 0.468

1.000 0.725 0.439

1.000 0.800 0.518

1.000 0.557

1.000 0.603

1.000

1.000

(continued)

DD (7) - Radius w/ demographics

CITS (3) - Applicants

CITS (4) - Nearest Neighbor

CITS (5) - NN w/out replacement

CITS (6) - Radius

DD (3) - Applicants

DD (4) - Nearest Neighbor 

DD (5) - NN w/out replacement

DD (6) - Radius

DD (2) - Eligible

CITS (7) - Radius w/ demographics

DD (1) - State

DD and CITS Designs in Educational Evaluation

Table E-5

Correlations Between Impact Estimates for Reading (Year 1 and Year 2)

RDD

CITS (1) - State

CITS (2) - Eligible



Table E-7 (continued)

-- Not applicable because both the study design and the comparison group selection method are different.

NOTES: Values in the table are the correlation between impact estimates, across bootstrapped samples (1000 iterations). The first row in each cell is the 

correlation for impacts in Year 1, and the second row is the correlation for impacts in in Year 2.



Study Design - Comparison Group CITS (1) CITS (2) CITS (3) CITS (4) CITS (5) CITS (6) CITS (7) DD (1) DD (2) DD (3) DD (4) DD (4) DD (5) DD (6)

0.246 0.239 0.265 0.219 0.252 0.304 0.130 0.340 0.333 0.371 0.202 0.263 0.321 0.309

0.216 0.219 0.204 0.244 0.316 0.369 0.165 0.335 0.337 0.360 0.261 0.332 0.418 0.351

1.000 0.980 0.792 0.473 0.614 0.754 0.267 0.884 -- -- -- -- -- --

1.000 0.981 0.829 0.355 0.489 0.559 0.194 0.851

1.000 0.813 0.475 0.621 0.760 0.265 -- 0.883 -- -- -- -- --

1.000 0.846 0.356 0.494 0.569 0.204 0.852

1.000 0.374 0.489 0.618 0.211 -- -- 0.885 -- -- -- --

1.000 0.296 0.410 0.473 0.176 0.845

1.000 0.777 0.641 0.192 -- -- -- 0.345 -- -- --

1.000 0.744 0.630 0.165 0.288

1.000 0.732 0.193 -- -- -- -- 0.551 -- --

1.000 0.671 0.158 0.492

1.000 0.275 -- -- -- -- -- 0.844 --

1.000 0.276 0.767

1.000 -- -- -- -- -- -- 0.275

1.000 0.284

1.000 0.983 0.801 0.609 0.729 0.893 0.752

1.000 0.981 0.832 0.522 0.678 0.868 0.635

1.000 0.816 0.603 0.731 0.899 0.757

1.000 0.841 0.524 0.686 0.877 0.640

1.000 0.491 0.617 0.751 0.609

1.000 0.458 0.597 0.753 0.565

1.000 0.791 0.658 0.484

1.000 0.786 0.616 0.406

1.000 0.780 0.596

1.000 0.763 0.527

1.000 0.769

1.000 0.672

1.000

1.000

(continued)

DD (7) - Radius w/ demographics

CITS (3) - Applicants

CITS (4) - Nearest Neighbor

CITS (5) - NN w/out replacement

CITS (6) - Radius

DD (3) - Applicants

DD (4) - Nearest Neighbor 

DD (5) - NN w/out replacement

DD (6) - Radius

DD (2) - Eligible

CITS (7) - Radius w/ demographics

DD (1) - State

DD and CITS Designs in Educational Evaluation

Table E-6

Correlations Between Impact Estimates for Math (Year 1 and Year 2)

RDD

CITS (1) - State

CITS (2) - Eligible



Table E-6 (continued)

-- Not applicable because both the study design and the comparison group selection method are different.

NOTES: Values in the table are the correlation between impact estimates, across bootstrapped samples (1000 iterations). The first row in each cell is the 

correlation for impacts in Year 1, and the second row is the correlation for impacts in in Year 2.



RF Radius Radius

School Characteristic Schools Radius Direct Radius Direct

Baseline reading test scores

Predicted score in last baseline year 52.75 55.07 54.27 51.22 51.22

(0.33) X (0.22) (-0.22) (-0.22)

Baseline trend (6 years) 1.24 1.21 1.24 1.04 1.11

(-0.03) (0) (-0.17) (-0.12)

Demographic Characteristics (Last Baseline Year)

Percent of schools that are urban 37.68 41.02 44.18 45.21 44.68

(0.07) (0.14) (0.16) (0.15)

Enrollment 382.61 376.88 393.62 390.91 391.29

(-0.04) (0.07) (0.05) (0.05)

Free/reduced-price lunch (%) 65.64 65.18 66.28 63.03 64.91

(-0.022) (0.03) (-0.13) (-0.04)

Racial/ethnic composition

  White (%) 81.35 83.31 80.33 81.02 80.45

(0.1) (-0.05) (-0.02) (-0.05)

  Hispanic (%) 2.50 1.94 2.58 1.88 2.34

(-0.15) (0.02) (-0.17) (-0.04)

  Black (%) 15.17 13.83 16.07 15.92 16.06

(-0.08) (0.06) (0.05) (0.05)

  Other (%) 2.50 1.94 2.58 1.88 2.34

(-0.15) (0.02) (-0.17) (-0.04)

Number of 3rd grade students 59.97 56.29 58.99 58.59 59.08

(-0.13) (-0.03) (-0.05) (-0.03)

3rd graders who are female (%) 47.91 47.60 47.20 47.07 47.57

(-0.07) (-0.15) (-0.18) (-0.07)

Children in poverty in district (%) 22.00 23.18 22.98 22.83 22.56

(0.17) (0.14) (0.12) (0.08)

Pupil-teacher ratio 14.47 15.17 * 14.83 15.09 14.91

(0.29) X (0.15) (0.25) X (0.18)

Number of schools 69 369 270 363 297

CITS design DD design

NOTES: Values shown in parentheses are the difference between RF and comparison schools in effect 

size. Effects sizes are calculated using the school-level standard deviation based on all schools in RF-

eligible districts in the last baseline year (including both RF schools and non-RF schools). Differences 

greater than 0.25 SD are indicated with an "X". Statistical tests of the difference between Reading First 

schools and comparison schools are not shown, because the precision of the estimated difference varies 

across the comparison groups (for a given effect size, larger comparison groups are more likely to be 

deemed statistically different from RF schools).

DD and CITS Designs in Educational Evaluation

Table F-1

Characteristics of Reading First Schools and Comparison Groups Created Using 

Propensity-Based vs. Direct Radius Matching



CITS DD

CITS Radius DD Radius

Among schools in the following Radius Direct Radius Direct

comparison groups… (N) (369) (270) (363) (297)

CITS - Radius (369) 100% 70% 94% 77%

CITS - Radius Direct (270) 96% 100% 99% 85%

DD - Radius (363) 95% 73% 100% 79%

DD - Radius Direct (297) 95% 77% 97% 100%

Overlap Between Comparison Groups Created Using Propensity-

Based Radius Matching vs. Direct Radius Matching, for Impacts 

on Reading

… % that are also in …

NOTES: Value in (Row X, Column Y) = Percentage of schools in the comparison 

group in Row X that are also part of the comparison group in Column Y.

(N) = Sample size of comparison group

Table F-2

DD and CITS Designs in Educational Evaluation
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Figure F-1 

 

Reading Test Score Trends for RF Schools and Comparison Groups Created 

Using Propensity-Based Radius Matching vs. Direct Radius Matching 
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B. Matched Groups for DD Design 
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A. Matched Groups for CITS Design 
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Figure F-2 

 

Estimated Impact on Reading Scores, CITS design 

Based on Propensity-Based Radius Matching vs. Direct Radius Matching  

(N = Number of comparison schools; SE = standard error, p = p-value)  
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Figure F-3 

 

Estimated Impact on Reading Scores, DD design 

 

Based on Propensity-Based Radius Matching vs. Direct Radius Matching 

(N = Number of comparison schools; SE = standard error, p = p-value)  
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