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Abstract 
 
In education RCTs, the misreporting of student outcome data could lead to biased estimates of 
average treatment effects (ATEs) and their standard errors. This article discusses a statistical 
model that adjusts for misreported binary outcomes for two-level, school-based RCTs, where it 
is assumed that misreporting could occur for students with truly undesirable outcomes, but not 
for those with truly desirable outcomes. A latent variable index approach using study baseline 
data is employed to model both the misreporting and binary outcome decision processes, 
separately for treatments and controls, using random effects probit models to adjust for school-
level clustering. Quasi-Newton maximum likelihood methods are developed to obtain consistent 
estimates of the ATE parameter and the unobserved misreporting rates. The estimation approach 
is demonstrated using self-reported arrest data from a large-scale RCT of Job Corps, the nation’s 
largest residential training program for disadvantaged youths between the ages of 16 and 24.  
 
Keywords: Randomized Control Trials, Misreported Outcomes, Clustered Designs, Average 
Treatment Effects, Causal Impact Parameters 
 



 

 



1 

 

In randomized control trials (RCTs) of educational interventions, there is a growing 

literature on impact estimation methods to adjust for missing student outcome data using such 

methods as multiple imputation, the construction of nonresponse weights, casewise deletion, and   

maximum likelihood methods (see, for example, Allison, 2002; Graham, 2009; Peugh & Enders, 

2004; Puma, Olsen, Bell & Price, 2009; Schafer & Graham, 2002). Much less attention, however, 

has been devoted in education RCTs to developing statistical methods to adjust for the 

systematic misreporting of student outcome data for those with nonmissing data. Without 

appropriate adjustments, misreporting could lead to biased impact estimates, which could be 

exacerbated if the intervention leads to treatment-control differences in misreporting rates and 

the composition of students with misreported data. Misreporting could also affect the variance of 

the estimated impacts, and hence, significance levels from statistical hypothesis tests of 

intervention effects.  

In some education RCTs, the extent of data misreporting can be assessed by conducting 

validation studies using “gold-standard” information from outside data sources and by 

conducting data reliability studies. In many education RCTs, however, data for such analyses 

may not be available that pertain to the specific outcomes and populations under investigation, 

and it may be prohibitively expensive to collect them. 

Accordingly, this article develops a statistical model for education RCTs—that relies on 

study baseline data and distributional assumptions on model error terms—to obtain consistent 

estimates of average treatment effects (ATEs) and their standard errors in the presence of 

misreported outcome data. The focus is on two-level RCT designs where schools (or classrooms 

within schools) are randomly assigned to a treatment or control condition. School-based designs 

are common in education research, because education RCTs often test interventions that provide 
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enhanced services to teachers or that affect the entire school. Thus, for these types of 

interventions, it is infeasible to randomly assign the treatment directly to students. The methods 

developed in this article, however, apply (collapse) to single-level designs where students are the 

unit of random assignment.  

The focus of the article is on the systematic misreporting of a binary outcome, which is 

assumed to be coded so that a value of 1 pertains to an undesirable result (such as the student 

was not proficient in math or English, used illicit drugs, or dropped out of school) and a value of 

0 pertains to a successful result. We consider the case where the binary outcome could be 

misreported as zero for those with a truly undesirable outcome but that it will always be reported 

accurately for those with a truly successful outcome. Thus, the observed data will contain too 

many “zeroes,” and estimates of the proportion of students with undesirable outcomes—labeled 

hereafter as “failure rates”—will be biased downwards for both the treatment and control groups, 

leading to impact estimates that could also be biased.  

This article adapts the parametric “double hurdle” model proposed by Cragg (1971) for 

continuous outcomes and nonclustered settings to (1) the RCT context, (2) two-level clustered 

designs, and (3) binary outcomes. Cragg’s double hurdle model for continuous outcomes has 

been used by many authors to model zero expenditures on food, alcohol, and tobacco from 

household surveys in various countries (see, for example, Deaton & Irish, 1984; Jones, 1989; 

Maki & Nishiyama, 1996; Su & Yen, 2000; Newman, Henchio, & Matthews, 2003; and Aristei 

& Pieroni, 2008), and was used by Blundell and Meghir (1987) to model the labor supply of 

married women. Hausman, Abrevava, and Scott-Morgan (1998) and Lewbel (2000) examine 

variants of the double hurdle model for binary outcomes using both parametric and semi-

parametric estimation methods, but do not consider clustered designs or RCT settings.  



3 

 

In our context, the double hurdle model specifies that a value of 1 for the binary outcome 

will be observed only if two hurdles are overcome: (1) the student has a true binary value of 1 

and (2) the student’s outcome is recorded correctly in the data. Using a latent index approach, a 

random effects probit model is specified for each hurdle—separately for treatments and 

controls—and a quasi-Newton maximum likelihood (ML) approach is discussed for estimating 

the model parameters and their standard errors. In this framework, we do not observe which 

particular students have misreported outcomes, but we can estimate overall misreporting rates for 

the treatment and control groups. These estimated misreporting rates can then be used to obtain 

consistent ATE parameter estimates that are not contaminated by misreporting.  

This article demonstrates the statistical approach using survey data from a large scale RCT 

of Job Corps, the nation’s largest vocationally focused education and training program for 

disadvantaged youths between the ages of 16 and 24 (Schochet, Burghardt, & McConnell, 2008). 

The binary outcome for this analysis is the student-reported arrest rate during the four year 

follow-up period after random assignment. The Job Corps evaluation is a good case study for this 

article, because the literature suggests that adolescents tend to underreport their criminal 

activities in surveys. Furthermore, students in the study treatment sample may have had greater 

incentives to underreport their arrests than control students, because Job Corps students who 

violate Job Corp’s zero tolerance policy are expelled from the program.  

The remainder of this article is in five sections. Section 1 briefly discusses the literature on 

the misreporting of outcomes that is germane to school-based RCTs. Section 2 discusses the 

identification of the causal ATE parameter with misreporting, and Section 3 discusses the double 

hurdle model and the ML estimation approach. Section 4 presents case study findings using the 

Job Corps data and Section 5 presents a summary and conclusions. 
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1. The Misreporting Problem in Education RCTs 

Data sources for collecting student outcome data in education RCTs will typically depend on 

the tested interventions and study research questions. The data sources, however, will typically 

include some combination of: 

• Student assessments that provide data on study-administered achievement test and 
behavior scale scores that are collected using common instruments across study sites  

• Student surveys that provide self-reported data on student activities, behaviors, and 
attitudes towards school 

• Parent surveys that provide information on parents’ perspectives on their children’s 
school performance and activities, school satisfaction measures, and measures of 
parental involvement with their children’s learning 

• Teacher surveys that provide teacher-level data on students’ classroom performance, 
behaviors, and attitudes towards learning 

• Administrative school records that provide data on district-mandated achievement test 
scores, class grades, absences, suspensions, and grade promotions  

 
There is a large literature that documents the systematic misreporting of survey data for 

outcomes that are germane to education RCTs (see, for example, Groves, Fowler, Couper, 

Lepkowski, Singer & Tourangeau, 2009). Survey misreporting could occur because respondents 

(students, parents, and educators in our context) do not understand certain questions, have 

trouble mapping responses into a response category, or do not recall events. Perhaps more 

problematic for education RCTs, evidence from validation studies suggest that survey 

respondents tend to systematically misreport responses to sensitive questions that are deemed to 

be embarrassing or intrusive. For instance, youth tend to underreport survey responses to 

sensitive questions about illicit drug use, the consumption of alcohol, criminal activities, 

abortion, and sexual behavior to avoid an unfavorable impression or to avoid perceived legal 

consequences (Tourangeau & Yan, 2007). For similar reasons, overweight adolescents often 

underreport their height and weight (Sherry, Jefferds, & Grummer-Strawn, 2007). Conversely, 
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survey respondents tend to overreport socially desirable outcomes and activities, such as their 

educational attainment (Black, Sanders, & Taylor, 2003; Kane, Rouse & Staiger, 1999; Mishel & 

Roy, 2006), school attendance (Barrera-Osorio, Bertrand, Linden, & Perez, 2011), and 

participation in such civic activities as voting (Ansolabehere & Hersh, 2011; McDonald, 2003) 

and going to church (Hadaway, Marler & Chaves, 1993).  

The evidence suggests also that respondents are more willing to report sensitive information 

when the questions are self-administered than if they are administered by an interviewer either 

in-person or by telephone (Tourangeau & Yan, 2007). These mode effects could affect the 

quality of data collected from student, teacher, and parent surveys. 

Administrative school records data could also be systematically misreported for a number of 

reasons. Misreporting could be due to data coding errors or to problems linking student, teacher, 

and school data over time. Furthermore, there have been recorded instances where educators 

have tampered with children’s standardized test scores to inflate them in response to pressures 

from the No Child Left Behind Act and the increasing use of educator accountability systems to 

measure teacher and school performance (New York Times, Education Section, June, 11 2010).    

The prevalence of misreported data in education RCTs could also differ across the treatment 

and control groups, although whether these effects are larger for treatments or controls will 

depend on the context. For instance, students, parents, and teachers in the treatment schools may 

be invested in demonstrating that the intervention is effective, and thus, might have incentives to 

overreport beneficial student outcomes. On the other hand, respondents in the treatment schools 

may be more willing to cooperate with study data collection procedures than those in control 

schools, and thus, might provide more truthful responses. Misreporting rates could also differ 

across the treatment and control groups if reported student outcomes are directly related to the 
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receipt of intervention services. This might be the case, for example, for an after-school 

intervention where participation is contingent on good behavior and strong academic 

performance. Another example is the Job Corps evaluation that is used for the case study below.  

 
2. The Causal ATE Parameter with Misreported Data 

Consider an experimental design with n  total schools where Tn  schools are randomly 

assigned to a single treatment group and  Cn  schools are randomly assigned to a control group. It 

is assumed that the sample contains qim  students in school i  and research condition q  ( q T=  

for treatments and q C=  for controls) and that there are 
( , ) 1

qn

qi
q T C i

m m
∈ =

= ∑ ∑  total students. 

To discuss the causal ATE parameter for school-based RCTs in the presence of misreported 

binary outcome data for students, we adapt the potential outcomes framework developed in 

Rubin (1974, 1977) and Holland (1986). Let iT  be an indicator that equals 1 if school i  is 

randomly assigned to the treatment group and 0 if the school is randomly assigned to the control 

group, and let T
 
be the 1 n×  

vector of treatment assignments for all n  study schools.  

Let ( )ijY T  
be the true potential binary outcome for student j  in school i  at a follow-up data 

collection point, given the random vector of school treatment assignments T . Importantly, we 

assume without loss of generality that the binary outcome is coded so that a value of 1 pertains to 

an undesirable result (such as, the student is not proficient in a math or English, used illicit drugs, 

was arrested, or dropped out of high school) and a value of 0 pertains to a positive result. Finally, 

let ( )ijR T  denote a potential binary indicator that equals 1 if the student’s binary outcome is 

recorded correctly and 0 if it is misclassified, given T .     
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For the remainder of this article, it is assumed that a student’s potential outcomes, ( )ijY T  

and ( )ijR T , are unrelated to the treatment statuses of other schools (Rubin, 1980):  

A1.  Stable Unit Treatment Value Assumption (SUTVA): If i iT T ′= , then ( ) ( )ij ijY Y ′=T T  
and  ( ) ( )ij ijR R ′=T T . 

SUTVA allows us to express ( )ijY T  as ( )ij iY T  and ( )ijR T  as ( )ij iR T . It implies that potential 

outcomes will not depend on the treatment or control assignments of other study schools. These 

conditions are likely to be plausible unless there is substantial interaction between students and 

staff across study schools.  

It is assumed that ( )ij iY T  
are random draws from Bernoulli distributions in the study 

superpopulation with probability parameters ( (1) 1)T ijp P Y= =  for treatments and 

( (0) 1)C ijp P Y= =  for controls. We assume similarly that ( )ij iR T  are Bernoulli random variables. 

Note that randomization ensures that iT  is independent of (1)ijY , (0)ijY , (1)ijR , and (0)ijR .  

We invoke two reporting assumptions. The first assumption pertains to students whose true 

binary outcome values are 0 (successes):   

A2.  ( ( ) 1 | ( ) 0) 1ij i ij iP R T Y T= = = . 

This assumption states that data will always be reported accurately for students with truly 

successful outcomes. This condition implies, for example, that students who do not use illicit 

drugs will always report this non-usage in student surveys, and that educators do not have 

incentives to tamper with the test scores of students who are proficient in math or English. This 

simplifying assumption is consistent with the results of the data quality validation studies 

discussed above, and thus, is likely to be realistic in practice for many binary outcomes that are 

used in education research. Hausman et al. (1998) relax this assumption by considering 



8 

 

parameter identification and estimation for a more general misreporting model under 

nonclustered designs where both outcome values of 0 and 1 are allowed to be misclassified.   

The second reporting assumption that we invoke pertains to students with undesirable 

outcomes:  

A3. 0 [ ( ) 1| ( ) 1] 1ij i ij iP R T Y T< = = ≤ .  

This assumption states that there will be at least one student with an undesirable outcome who 

will correctly report that outcome. As discussed further below, this assumption is required for 

parameter identification in the estimation models. 

In order to simplify the notation, we hereafter write the potential outcomes as (1)Tij ijY Y= , 

(0)Cij ijY Y= , (1)Tij ijR R= , and (0)Cij ijR R= . In addition, we define ijy  to be the observed binary 

outcome for student j  in school i . Because our focus is on misreporting, to keep the 

presentation manageable, we do not simultaneously model the missing data and misreporting 

processes, but assume that data on ijy  are missing at random conditional on the available model 

covariates.     

Using this RCT framework, the causal ATE impact parameter for the population failure rate 

is defined as follows: 

(1) ( ) ( 1) ( 1)Y Tij Cij Tij CijATE E Y Y P Y P Y= − = = − = . 

This parameter is the difference between the population failure rates in the treatment and control 

conditions. 

If the binary outcome is recorded correctly for all students, we have the relation 

 (2) (1 )ij i Tij i Cijy TY T Y= + − . 

 In this case, we can link the observed data with the YATE  parameter as follows: 
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 (3) ( | 1) ( | 0) ( | 1) ( | 0)ij i ij i Tij i Cij i YE y T E y T E Y T E Y T ATE= − = = = − = = , 

where the second equality holds because ( | 1) ( )Tij i TijE Y T E Y= =  and ( | 0) ( )Cij i CijE Y T E Y= =  due 

to school-level randomization. Thus, in the absence of misreporting, YATE  can be consistently 

estimated as the treatment-control difference in observed failure rates using standard estimation 

approaches such as hierarchical linear modeling (HLM) (Raudenbush & Bryk, 1992), where the 

models could include student- and school-level baseline covariates to improve precision. 

With misreporting, Equations 2 and 3 no longer hold. In this case, standard estimation 

approaches based on the observed data will not typically provide consistent estimates of YATE , 

as shown in the following proposition: 

Proposition 1. Under assumptions A1 and A2, standard impact estimators (such as HLM) 

will consistently estimate the following impact parameter: 

(3) ( | 1) ( | 0) ( 1) ( 1)M
Y ij i ij i T Tij C CijATE E y T E y T r P Y r P Y= = − = = = − = , 

 where ( 1| 1)T Tij Tijr P R Y= = =  and ( 1| 1)C Cij Cijr P R Y= = =  are correct reporting rates for those 

with unsuccessful outcomes in the treatment and control conditions, respectively.  

Proof. Conditioning on TijY , we can express ( | 1)ij iE y T =  as follows: 

 
(4 ) ( | 1) ( | 1, 1) ( 1| 1)

( | 0, 1) ( 0 | 1).
ij i ij Tij i Tij i

ij Tij i Tij i

a E y T E y Y T P Y T

E y Y T P Y T

= = = = = =

+ = = = =
 

Conditioning further on TijR  and noting from A2 that ( | 0, 1) 0ij Tij iE y Y T= = = , we find that: 

 (4 ) ( | 1) ( | 1, 1) ( 1| 1) ( 1)ij i ij Tij Tij Tij Tij Tijb E y T E y Y R P R Y P Y= = = = = = = ,  

where the redundant conditioning on iT  is dropped on the right-hand side of Equation 4b because 

of randomization. Because ( | 1, 1) 1ij Tij TijE y Y R= = =  and ( 1| 1)T Tij Tijr P R Y= = = , it follows that 
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( | 1) ( 1)ij i T TijE y T r P Y= = = . A parallel argument shows that ( | 0) ( 1)ij i C CijE y T r P Y= = = , and 

Equation 3 follows. 

Clearly, the M
YATE  and YATE  parameters will equate if 1T Cr r= =  (that is, if there is no 

misreporting). The two parameters will also equate if 0YATE =  and T Cr r=   (that is, if the null 

hypothesis of no treatment effects is true and misreporting rates do not differ for treatments and 

controls). In addition, if 0 1T Cr r< = <  and 0YATE ≠  then | | | |M
Y YATE ATE≤ . For other 

scenarios, M
YATE  could be bigger, smaller, or equal to YATE  depending on the specific 

misreporting and failure rates in the treatment and control conditions. However, if 0YATE ≠ , for 

most realistic scenarios, M
YATE  will be smaller than YATE  in absolute value. Thus, in our 

context, if the intervention improves outcomes, misreporting will likely lead to downwardly 

biased impact estimates. 

The following proposition follows directly from Proposition 1. 

 Proposition 2. Under assumptions A1 to A3, the YATE  parameter can be recovered from 

the data as follows: 

 
( | 1) ( | 0)

(5) ij i ij i CT
Y

T C T C

E y T E y T
ATE

r r r r
αα= =

= − = − ,  

where ( | 1)T ij iE y Tα = =  and ( | 0)C ij iE y Tα = = . 

Equation 5 suggests that a consistent estimator for YATE  with misreporting is as follows: 

ˆˆˆ(6)
ˆ ˆ

CT
Y

T C

ATE
r r

αα
= − , 

where ˆqα  is a consistent estimate of qα  and q̂r  is a consistent estimate of qr  ( ( , )q T C∈ ). The 

estimator ˆqα  can be obtained using observed treatment and control group failure rates, and, as 
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discussed below, q̂r  can be obtained from the double hurdle model. If available, q̂r  can also be 

obtained using pertinent information from validation studies on misreporting rates or known 

associations between covariates and misreporting probabilities that can be used to predict 

misreporting rates for the study sample (see Katz & Katz, 2010).  

Equation 6 is a ratio estimator because the numerators and denominators are both measured 

with error. Thus, a variance estimator for ˆ
YATE  can be obtained using an asymptotic Taylor 

series expansion of ˆ
YATE  around the true value YATE :  

 ( ) 2 2

ˆˆ ˆˆ ( ) ( )( ) ( )ˆ(7) [ ] [ ]C C C C CT T T T T
Y Y

T T C C

r rr rATE ATE
r r r r

α α αα α α − −− −
− ≈ − − − . 

 
Taking squared expectations on both sides of Equation 7, ignoring covariance terms, and 

inserting estimators for unknown parameters yields the following first-order asymptotic variance 

estimator for ˆ
YATE :  

2

2 2

2

2 2

ˆ ˆˆ ˆ ˆ ˆ( ) ( / ) ( )ˆ ˆ(8) ( ) [ ]
ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ( ) ( / ) ( )[ ].
ˆ ˆ

T T T T
Y

T T

C C C C

C C

AsyVar r AsyVar rAsyVar ATE
r r

AsyVar r AsyVar r
r r

α α

α α

≈ +

+ +

 

 
Because ˆqα  and q̂r  are asymptotically normal, ˆ

YATE  will also be asymptotically normal (see, 

for example, Greene, 2000).1 The case study below presents results using this ratio estimator as 

well as an alternative approach where consistent parameter and standard error estimates for 

YATE  are obtained directly from the double hurdle model (as discussed below).  

                                                 
1 The normal approximation may not be suitable for event rates that are very close to 0 or 1.  
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Finally, it is important to note that the analysis presented above applies not only to binary 

outcomes but also to continuous outcomes where (1) more positive variable values are associated 

with poorer outcomes and (2) those with true positive values have incentives to report zero 

values. In this case, the analysis and notation from above applies except that we can no longer 

express expected values of potential outcomes as event probabilities. Note that with continuous 

outcomes, the approach assumes that truly positive outcome values are either reported correctly 

or as zero, but not any value in between. This assumption may not always be realistic in 

education research, and is a primary reason why this article focuses on binary outcomes. 

 
3. The Double Hurdle Model and ML Parameter Estimation 

The double hurdle model for continuous outcomes was introduced by Cragg (1971) to 

generalize the standard Tobit censored regression model (Tobin, 1958). This article adapts this 

model to (1) RCTs, (2) school-based designs, and (3) binary outcomes. The approach is based on 

the following latent index variable framework where binary decisions are made depending on 

whether or not latent indices cross a threshold value of zero: 

*(9) ( )qij qi qijY uθ= + +qij qQ β  

       1qijY =  if  
* 0qijY >  

       0qijY =  if 
* 0qijY ≤  

*(10) qij qijR ε= +qij qX γ   

       1qijR =  if  
* 0qijR >  

       0qijR =  if 
* 0qijR ≤ . 
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In these equations, *
qijY  is a continuous latent variable underlying the true potential binary 

outcome value for student j  in school i  and research condition q , and *
qijR  is a continuous 

latent index variable underlying the reporting accuracy of the student’s data, which in our 

context is germane only for those with * 0qijY > . The row-vectors qijQ  and qijX  are observed 

baseline covariates that contain student- and school-level variables (including the intercept) as 

well as random assignment blocking (stratification) variables such as school district indicators. It 

is assumed that conditional on the covariates, qiθ  are iid 2(0, )
q

N θσ  school-specific random error 

terms that capture the correlation between latent index values for students in the same school. It 

is further assumed that conditional on the covariates and the school random effects, qiju and qijε  

are iid (0,1)N  student random errors. The random errors within and across equations are 

assumed to be distributed independently of each other. The coefficient vectors qβ  and qγ  and the 

variance 2 0
qθ

σ >  are parameters to be estimated.  

 Equation 9 defines a random effects probit model for clustered RCT designs (see, for 

example, Gibbons, Hedeker, Charles & Frish 1994), where separate regression models are 

specified for the treatment and control groups. Equation 10 defines the misreporting process 

where the effects of covariates on reporting decisions and error variances are allowed to differ 

across the treatment and control groups. Equations 9 and 10 formalize a sequential decision-

making process, where decisions are first made regarding binary outcome values, followed by 

decisions regarding reporting accuracy (for those with * 0qijY > ).2  

                                                 
2 It is possible to allow for correlations of the errors across Equations 9 and 10 by specifying bivariate normal 

distributions (to allow for the possibility that *

qijR
 
and *

qijY  are simultaneously determined). Jones (1992) used this 
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 Note that it is theoretically possible to include school-level random effects in the reporting 

model in Equation 10. However, for sample sizes that are typically used in education RCTs, 

identification of the variance components for this specification will be problematic and statistical 

power will be low. Thus, we focus on a design that excludes random effects in Equation 10, but 

the approach presented below can be generalized to allow for this clustering.   

Using assumptions A1 to A3, the data generating process for the observed data is as follows: 

 (11) 1qijy =  if  
* 0qijY >  and * 0qijR >    

0qijy =  if  
* 0qijY ≤  or [ * 0qijY >  and 

* 0qijR ≤ ]. 

Thus, we observe 1qijy =  (an undesirable outcome) if the true binary outcome value is 1 and the 

data are reported accurately. Conversely, we observe 0qijy =  (a desirable outcome) if either the 

true binary outcome value is 0 or if the true binary outcome value is 1 and the data are 

misreported. Note that to simplify the notation for expressing the log likelihood function below, 

we use the notation qijy  for the observed outcome rather than ijy  as above. 

 The log likelihood function for the vector of observed binary outcomes can be obtained in 

several steps using the approach of Butler and Moffit (1982). First, conditioning on the school 

random effects and the vector of observed covariates iT⎡ ⎤= ⎣ ⎦qij qij qijZ Q X , we have that 

* *(12) ( 1 | , ) ( 0 | , ) ( 0 | , )
( ) ( )

qij qi qij qi qij qi

qi

P y P Y P Rθ θ θ

θ

= = > >

= Φ + Φ
qij qij qij

qij q qij q

Z Z Z
Q β X γ

 

and 
                                                 
(continued) 
approach for a nonclustered double hurdle design with continuous outcomes. Allowing for these correlations for 
clustered designs with binary outcomes, however, adds considerable computational complexity for parameter 
estimation, and is not performed in this article.   
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* * *(13) ( 0 | , ) ( 0 | , ) ( 0 | , ) ( 0 | , )

1 ( ) ( ).
qij qi qij qi qij qi qij qi

qi

P y P Y P Y P Rθ θ θ θ

θ

= = ≤ + > ≤

= −Φ + Φ
qij qij qij qij

qij q qij q

Z Z Z Z
Q β X γ

 

Second, because of the assumption that observed responses for students within school i  are 

independent conditional on the random school effects, the joint probability of observing a vector 

pattern of binary responses qiy  for students in school i  is equal to the product of their response 

probabilities: 

 1

1

(14) ( | , ) [ ( ) ( )]

[1 ( ) ( )] ,

qi
qij

qij

m
y

qi qi
j

y
qi

l θ θ

θ
=

−

= Φ + Φ ×

−Φ + Φ

∏qi qi qij q qij q

qij q qij q

y Z Q β X γ

Q β X γ

 

where ⎡ ⎤= ⎣ ⎦qiqi qi1 qi2 qimZ Z Z ... Z  contains covariates for all students in the school and (.)Φ  is the 

standard normal cumulative distribution function. 

Third, the marginal probability of observing qiy  that is unconditional on the random school 

effects can be obtained using Equation 14 by integrating out qiθ  over its assumed normal 

probability distribution: 

1(15) ( | ) ( | , ) ( ) ,
q q

q
qi qh l

θ θ

θ
θ φ θ

σ σ

∞

−∞

= ∂∫qi qi qi qiy Z y Z    

where (.)φ  is the standard normal density function.3 Finally, because student responses are 

independent across schools, the log likelihood function in research condition q  for the full 

vector of student responses across all schools can be expressed as follows: 

                                                 
3 If random effects are included in the reporting model in Equation 10, then these random effects would also 

need to be integrated out in Equation (15) in a symmetric way as for qiθ .  
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1

(16) log log( ( | )).
qn

q
i

L h
=

= ∑ qi qiy Z  

 If weights are used in the analysis to adjust for such factors as differential sampling 

probabilities and missing data, the log likelihood in Equation 16 can be generalized as follows:  

 1
(17) log log( ( | )),

qn

q qi
i

L wgt h
=

= ∑ qi qiy Z  

where 
1

qim
qi qijj

wgt wgt
=

= ∑  is the sum of the qijwgt  weights for students in school i  (that are 

scaled to sum to qn ).  

 ML methods can be used to estimate the model parameters in Equation 17, separately for the 

treatment and control group samples. Parameter identification is driven by (1) the assumed 

nonlinear normal error distributions, (2) an exclusion restriction where at least one baseline 

covariate differs in qijQ  and qijX , and (3) assumption A3. The exclusion restriction is needed 

because the probabilities for each hurdle enter symmetrically in the likelihood function in 

Equation 14. Importantly, the predictive power of the qijQ  covariates plays a critical role in the 

model to help distinguish between 0qijY =  students (some of whom have misreported data) and 

1qijY =  students (all of whom have accurate data). Intuitively, the  qijQ  covariates are used to 

“adjust” the outcomes of students with reported values of 0 who “look like” students with 

reported outcome values of 1. Thus, the success of the model depends critically on the quality of 

the baseline covariates that are used to predict failure rates (see the simulation results presented 

in Appendix B).  

In practice, there may not always be available scientific evidence to identify covariates that 

satisfy the exclusion restriction (that is, covariates that influence failure rates but not 
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misreporting rates, or vice versa). Furthermore, with sample sizes that are typically used in 

education RCTs, parameter identification will become problematic in practice if the qijQ  and 

qijX  covariates largely overlap. This parameter identification issue is a key reason why the 

previous literature using the double hurdle model has focused on models that exclude qijX  

covariates (see, for example, Deaton and Irish, 1984; and Hausman et al., 1998). Thus, in the 

empirical work below, we include a rich set of qijQ  covariates in the model, but include either no 

qijX  covariates beyond the intercept or a small number of qijX  covariates (also included in qijQ ) 

that the literature indicates may be associated with misreporting rates in our context.  

Simulation results shown in Appendix B suggest that the exclusion of relevant qijX  

covariates will not severely bias the estimated failure rates unless misreporting rates differ 

substantially across levels of the qijX covariates. Thus, if researchers have a priori evidence that 

some qijX covariates might matter, a small number of these covariates could be included in the 

model to examine the robustness of study findings. Alternatively, the model could be estimated 

separately within strata formed by the qijX covariates (where the misreporting equations would 

include an intercept only), and the estimates could then be aggregated across strata to obtain full 

sample estimates. It is theoretically possible, however, for studies to include a rich set of qijX  

covariates in the model if exclusion restrictions exist and sample sizes are large.  

Commonly-used Gaussian-Hermite Quadrature (GHQ) procedures can be employed to 

approximate the integrals in Equation 15 (see Gil, Segura & Temme, 2007; Pennington, 1970; 

Stroud & Secrest, 1966). The general GHQ approximation is 
2

1
( ) ( )

D
x

d d
d

e g x x w g a
∞

−

=−∞

∂ ≈∑∫  for 
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some function (.)g , where the weights dw  and abscissas da  can be obtained from published 

tables for D  evaluation points. 

To make the integrand in Equation 15 conform to the GHQ structure, we can make a change 

of variables in Equation 15 using the substitution / 2
qq q θψ θ σ= . The GHQ method can then be 

applied, which after some algebra yields the following approximation to the log likelihood 

function: 

(1 )

1 1 1

1(18) log [log( (1 ) )],
qiq yqij

qij

mn D
y

q qi d qij qij
i d j

L wgt w prob prob
π

−

= = =

≈ −∑ ∑ ∏
 
where  

 (19) ( 2 ) ( )
qqij dprob aθσ= Φ + Φqij q qij qQ β X γ . 

In the empirical work, quasi-Newton methods (see Fletcher 1987) were used to obtain ML 

estimates of qβ , qγ , and 
qθ

σ , and the inverse of the estimated Hessian matrix provided  

asymptotic variance estimates. Appendix A displays the gradient vectors of the log likelihood 

function that are required to apply this method as well as estimation details. 

The ML estimates can then be used to obtain the following consistent estimates of 

( 1)T Tijp P Y= =  and ( 1)C Cijp P Y= = : 

 *

2
( , ) 1 1

ˆ
ˆ(20) ( )

ˆ 1

f fi

q

n m

q fij
f T C i j

p wgt
θσ∈ = =

= Φ
+

∑ ∑∑ fij qQ β
, 

where *
( , ) 1 1

/ f fin m
fij fij fijf T C i j

wgt wgt wgt
∈ = =

= ∑ ∑ ∑  are student-level weights. The estimator in 

Equation 20 is the weighted average of the predicted probabilities that a student in the sample 

has a value of 1qijY = , and is obtained using all treatment and control students. The 

corresponding ATE estimator—which we label the “direct ML estimator”—is ˆ ˆ ˆY T CATE p p= − . 
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Similarly, the Tr  and Cr  reporting rate parameters can be estimated as follows: 

 

**

1 : 1

ˆˆ(21) ( )
q qi

qij

n m

q qij
i j y

r wgt
= =

= Φ∑ ∑ qij qX γ ,  

where **

1 : 1
/

q qi

qij

n m

qij qij qij
i j y

wgt wgt wgt
= =

= ∑ ∑  and where the calculations are conducted using treatments 

(controls) with observed 1qijy =  values. This estimator is the average predicted probability that a 

student with a reported undesirable outcome has his or her data classified correctly. The 

corresponding estimator for the misreporting rate is ˆ(1 )qr− . An alternative, more complex 

estimator for qr  that uses the full treatment and control samples is as follows: 

 *
1 2

( , ) 1 1

ˆ1 ˆˆ(22) ( ) ( )
ˆ ˆ 1

f fi

q

n m

q qij
f T C i jq

r wgt
θ

α σ∈ = =

= Φ Φ
+

∑ ∑∑ fij q
fij q

Q β
X γ . 

To obtain asymptotic variance estimates for ˆ qp , q̂r , and 1q̂r , we note first that these 

estimators are functions of subvectors of the full set of estimated model parameters λ̂ . Let Ω  be 

the asymptotic variance-covariance (information) matrix for λ̂ . The asymptotic variance of ˆ qp  

can then be calculated using an asymptotic Taylor series expansion of ˆ qp  around the true value 

qp  (that is, using the Delta method) as follows:  

ˆˆ(23) ( ) ( )q qn p p n− ≈ −q qg β β , 
 

where ( / )qp= ∂ ∂q qg β
 
is the gradient (row) vector. Equation 23 can then be used to obtain the 

following asymptotic variance for ˆ qp : 

ˆ(24) ( ) (1/ )q qAsyVar p n ′= q β qg Ω g , 
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where βΩ  is the submatrix of Ω  that corresponds to β . Because ˆ
qβ  is asymptotically normal, 

ˆ qp  will also be asymptotically normal (see, for example, Greene, 2000). Equation 24 can be 

evaluated using the estimators ˆ
qβ  and ˆ

βΩ . The same method can be used to obtain asymptotic 

variance estimates for q̂r  and 1q̂r . 

Note that the statistical approach developed above simplifies considerably for nonclustered 

RCT designs where students are the unit of random assignment. In this case, the random school 

effect qiθ  does not enter the model (so that numerical integration is not required) and all student 

responses are independent conditional on the covariates. Thus, in nonclustered designs, the form 

of the likelihood function is based on a simplified version of Equation 14 where the random 

school effects are omitted and where the product of probabilities extends to the full treatment 

(control) sample.  

The statistical approach can also be applied to continuous outcomes. The key changes are as 

follows: (1) the variance of qu  in Equation 9, 2
quσ , can now be specified and estimated; (2) the 

first condition in Equation 11 is that *
qij qijy Y=  is observed if * 0qijY >  and * 0qijR > ; and (3) the 

contribution to the likelihood function for those reporting nonzero outcomes becomes 

1 ([ ] / ) ( )
q qu qij qi uyσ φ θ σ− − − Φqij q qij qQ β X γ . The GHQ and quasi-Newton methods discussed above 

can then be used to obtain ML estimates.  

  
4. Case Study Using National Job Corps Study Data 

Job Corps is the nation’s largest vocationally focused education and training program for 

disadvantaged youths. It serves youths between the ages of 16 and 24, primarily in a residential 

setting, in more than 100 Job Corps centers nationwide. It provides services to more than 60,000 
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new participants each year, at a cost of about $1.5 billion. While at centers, Job Corps students 

receive intensive vocational training, academic education, and a wide range of other services, 

including counseling, social skills training, and health education. Job Corps students enroll in 

centers for an average of about 8 months, but program duration is voluntary and varies: one 

quarter of students stay longer than one year and a similar fraction stay less than three months 

(Schochet et al., 2008).  

The National Job Corps Study (NJCS) used an RCT design where from late 1994 to early 

1996, nearly 81,000 eligible applicants nationwide were randomly assigned to a treatment group, 

who were allowed to enroll in Job Corps, or to a control group, whose 6,000 members were not 

(Schochet et al, 2008). Program impacts on key outcomes—education and training, employment 

and earnings, criminal activities, and drug use—were estimated using baseline and follow-up 

survey data collected during the four years after random assignment (and administrative earnings 

data covering the nine years after random assignment).  

A key NJCS outcome was the arrest rate during the four-year follow-up period. Arrest data 

were obtained from follow-up surveys conducted 12, 30, and 48 months after random 

assignment. The surveys were conducted by telephone, and, if necessary, in-person. The NJCS 

estimated arrest rate impacts using a binary variable that was set to 1 for those who ever 

answered yes to the following question pertaining to the follow-up period: “Have you ever been 

arrested or charged with a delinquency or criminal complaint or for a probation or parole 

violation?” The sample for this analysis included those who completed the 48-month interview 

(81 percent of treatments and 78 percent of controls). The binary arrest variable was missing for 

less than 1 percent of survey respondents. All analyses were conducted using weights to adjust 

for the sample and survey designs and for interview nonresponse (Schochet et al., 2008). 
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The NJCS found that Job Corps participation significantly reduced self-reported arrest rates; 

32.3 percent of controls reported that they were arrested during the 48-month period, compared 

to 29 percent of treatments, a statistically significant reduction of 3.3 percentage points 

(Schochet et al. 2008). Impacts were largest during the period when treatments were enrolled in 

Job Corps, but persisted during the postprogram period. Note that Job Corps students can leave 

centers during breaks and vacations; thus some treatments were arrested outside their centers.  

As discussed, there is evidence from the literature that youth underreport their criminal 

activities. Huizinga and Elliott (1986), for instance, report that about 80 to 90 percent of youth 

with known offenses admit to them. Thus, the arrest rate impact findings for the NJCS may have 

been affected by underreporting. Furthermore, students in the treatment sample may have had 

greater incentives to underreport their arrests than control students, because Job Corps students 

who violate Job Corp’s zero tolerance policy are expelled from the program, and treatment 

students may have been invested in showing that the program is effective.  

Accordingly, we re-estimated the arrest rate impacts using the double hurdle model, where 

detailed baseline survey data were used to construct the model covariates. The clustering variable 

for the analysis was the Job Corps center to which a sample member was designated, which was 

obtained from Job Corps intake staff prior to random assignment, and thus, is available for both 

treatments and controls. The analysis sample contained 10,500 youths (6,350 treatments in the 

research sample and 4,150 controls) who (1) completed the baseline and 48-month follow-up 

interviews, (2) had nonmissing data for the binary arrest outcome, and (4) had nonmissing center 

designations for one of the 105 Job Corps centers in operation at the time of the evaluation. The 

NJCS weights were used for the analysis to obtain nationally representative estimates. 
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Table 1 displays descriptive statistics for the qijQ  covariates that were used in the probit 

models to predict arrest rates. The baseline covariates were measured at the time of random 

assignment and include measures of gender, race/ethnicity, age, education and employment 

experiences, family background, health, and prior arrests. These covariates were selected 

because the literature suggests that they are associated with juvenile arrest rates (see, for 

example, Steinberg, 2008) and exploratory analyses suggested that they had some explanatory 

power in the probit models.  

As shown in Table 1, Job Corps serves disadvantaged youths; about three-quarters of 

students in the sample did not have a high school credential at random assignment, half grew up 

in female-headed households, and more than 40 percent were in households that received food 

stamps in the prior year. In addition, about one-quarter of students reported that they were ever 

arrested prior to random assignment. Because of random assignment, there were no statistically 

significant differences between the baseline characteristics of treatment and control students. 

Note that Job Corps intake staff typically obtains official arrest records on program 

applicants as part of the program eligibility determination process. Thus, the self-reported prior 

arrest measure may not have been subject to as much measurement error as the follow-up arrest 

indicator that was used for the impact analysis. Nonetheless, we estimated models with and 

without the prior arrest measure as a covariate (see below), although our main results come from 

models that included the prior arrest measure.  

Table 2 displays differences in regression-adjusted arrest rates for each baseline 

characteristic relative to the pertinent left-out characteristic for two binary choice models: (1) a 

standard random effects probit model and (2) the double hurdle model where the qijX  covariates 

included only an intercept. Consistent with the literature, we find that self-reported arrest rates 
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were significantly higher for males, the youngest students, those without a high school 

credential, those who were not working or in school prior to program application, those who 

received food stamps, those with health problems, and those with previous arrests. There were 

few differences between the findings for treatment and control students and between the double 

hurdle and standard random effects probit models, although the double hurdle model produced 

more statistically significant parameter estimates.        

Table 3 displays estimated misreporting rates from the double hurdle model (among those 

who reported not being arrested during the follow-up period). The results are displayed for three 

model specifications that varied based on the included qijQ  and qijX  covariates: (1) Model 1, 

which included the highly predictive prior arrest indicator in qijQ  and only an intercept in qijX ; 

(2) Model 2, which was similar to Model 1 except that the prior arrest indicator was not included 

in qijQ ; and (3) Model 3, which included the prior arrest indicator variable in qijQ  as well as 

race/ethnicity indicators in qijX  to account for possible racial differences in the underreporting of 

criminal activities (see, for example, Hindelang, Hirshi & Weis, 1981). Misreporting rates for all 

models were estimated using Equation 21 and standard errors were estimated using Equation 24.  

Across model specifications, the misreporting rate was about 2 to 4 percentage points higher 

for treatment than control students (Table 3). The misreporting rate for treatments was about 10 

percent in Models 1 and 3 (that included the prior arrest variable), and 4.4 percent in Model 2; 

these misreporting rates are all statistically significant. The misreporting rate for controls was 

about 7 percent in Models 1 and 3, but 0 in Model 2. The estimated impact on the misreporting 

rate—that is, the treatment-control difference—was 3 percentage points in Model 1 (p-value = 
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.068), 4.4 percentage points in Model 2 (p-value = .035), and 2 percentage points in Model 3 (p-

value = .197).4  

Table 4 displays the arrest rate ATE findings for Models 1 to 3 using two double hurdle 

estimators: (1) the ratio estimator from Equations 6 and 8 and (2) the direct ML estimator from 

Equations 20 and 24. As discussed, the Job Corps evaluation found that 29 percent of treatments 

and 32.3 percent of controls reported ever being arrested during the follow-up period. Using the 

double hurdle model, these estimated arrest rates increased for both treatments and controls, 

reflecting the positive misreporting rate estimates that were found for most model specifications. 

Accordingly, the arrest rate impacts were typically smaller in absolute value than the original           

-3.3 percentage point impact. The estimated arrest rate impacts remain statistically significant 

using the ratio estimator, but not always for the direct ML estimator.  

These results suggest that accounting for survey misreporting in the NJCS had some effect 

on the arrest rate impact findings. Misreporting occurred for both research groups, but was 

somewhat more common for the treatment students. Thus, accounting for misreporting increased 

the estimated arrest rates for both treatments and controls, and decreased the arrest rate impacts 

in absolute value.  

5. Summary and Conclusions 

This article developed a parametric statistical framework to test and adjust for the 

misreporting of binary outcomes in the estimation of ATEs for school-based RCTs. We 

considered a realistic scenario where it was assumed that binary outcomes on sensitive topics can 

be misreported for students with truly undesirable outcomes, but not for those with truly 

                                                 
4 Consistent with the literature, we found using Model 3 that blacks and Hispanics were more significantly 

likely to underreport their arrest rates than whites (not shown). 
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desirable outcomes. A latent index framework was employed where misreporting and binary 

outcome decision processes were modeled using available baseline data and normality 

assumptions about model error terms. This approach yields a “double hurdle” random effects 

probit model that can be estimated separately for treatments and controls. The article discussed 

quasi-Newton ML methods for obtaining consistent estimates of the unobserved misreporting 

rates, the ATEs on the considered binary outcomes, and standard errors of the estimates that are 

not contaminated by misreporting. The article also discussed how the approach can be applied to 

continuous outcomes and to nonclustered, student-level RCT designs.     

In RCTs where suspicion exists that key outcomes might be misreported, education 

researchers could conduct data validation studies using gold-standard information from outside 

data sources (such as administrative records data) and data reliability studies. Pertinent data, 

however, may not always exist for such analyses and it may be prohibitively expensive to obtain 

them. In these instances, the double hurdle model could be used to conduct exploratory analyses 

to examine the extent to which the impact findings from standard HLM models might be 

sensitive to misreporting. Thus, analysts might consider adding the double hurdle model to the 

toolbox of exploratory analytic methods that can be used to assess the robustness of ATE 

findings to alternative model assumptions, specifications, and estimation methods.  

Importantly, the success of the double hurdle model hinges critically on the predictive power 

of the baseline covariates used in the analysis. This is because the model uses the covariates to 

“adjust” the outcomes of students with reported successful outcomes who “look like” students 

with reported unsuccessful outcomes. Thus, the use of the double hurdle model will typically 

require the availability of detailed baseline data—including pre-intervention measures of the 

outcomes—that the literature suggests are correlated with the outcomes of interest for the study 
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population. This article demonstrated, using simulations, the importance of predictive baseline 

data for the double hurdle model. 

Finally, as shown in the case study using the Job Corps data, estimates using the double 

hurdle model might be sensitive to the choice of model covariates. Thus, researchers using this 

approach must carefully examine the robustness of study findings to alternative sets of 

covariates, and, in particular, to the inclusion of covariates that have significant predictive power 

in the models, but that could be endogenous or subject to measurement error, and thus, that 

might cause bias. 
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Appendix A. Details of the Quasi-Newton ML Estimation Procedure 

The iterative quasi-Newton estimation method requires the gradient (first derivative) vector 

of the log likelihood in Equation 17, but not the Hessian matrix (which is very complex in our 

application). To derive the gradient vector for the analysis, we first reduce notational complexity 

by expressing the log likelihood function for research group ( , )q T C∈  as follows: 

1

( 1) log log( ),
qn

q qi qi
i

A L wgt B
=

≈ ∑
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After some algebra, we find that the gradient for the kth parameter qkβ  in the row vector qβ  is as 

follows: 
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where qijkQ  is the kth covariate in the student’s covariate vector qijQ , and qij
θφ  is the normal 

density function associated with qij
θΦ . 

Using parallel notation, the gradient ( log / )
qqL θσ∂ ∂  is the same as above except that qijkD

in Equation A5 changes to 2 X
qij qij daθφΦ . Finally, the gradient ( log / )q qkL γ∂ ∂  is the same as 

above except that qijkD  changes to qij qij qijkXθ ηφΦ .  
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The quasi-Newton ML estimation approach was conducted using SAS Proc IML programs 

written by the author. The programs used the SAS NLPQN quasi-Newton function. The weights 

dw  and abscissas da  for the GHQ method were obtained using the Mathematica Software for 

13D =  evaluation points. The ML algorithm was applied for different starting parameter values 

to assess whether global versus local maxima were found. 

The SAS NLPQN function provides ML estimates for the full set of parameters λ  but not 

variance estimates. Thus, the variance estimates were estimated numerically using diagonal 

elements of the Hessian matrix ˆ= − -1H Ω , where Ω̂  was calculated using the gradients 

log /qk q qkg L γ= ∂ ∂  as follows: 

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )ˆ( 7) ,
2 2

qk qk qk qkg h g g h g
A

h h
′ ′+ − + −

′ = +k kλ J λ λ J λ
Ω(k,k )  

where kJ  is a column vector that equals one in row k  and zero elsewhere, and h  is a very small 

number (see Dennis & Schnabel, 1983). 

 
Appendix B. Monte Carlo Simulations 

We conducted simulations to examine the performance of the double hurdle model for 

correctly specified models and misspecified models where relevant ijX  covariates were excluded 

from the estimation models. Simulated datasets were obtained using the following model: 

*
0 1 1 2 2( 1) ( )ij ij ij i ijB Y Q Q uβ β β θ= + + + +  

*
0 1 1( 2) ij ij ijB R Xγ γ ε= + + , 

where 1ij i ijQ λ δ= +  is a (0,1)N  random variable where iλ  and ijδ  were drawn from (0,.1)N  and 

(0,.9)N  distributions, respectively; 2ijQ  was drawn from a Uniform(-2,2) distribution; the 
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covariate 1ijX was set to 1ijQ  in some specifications and omitted in others; the error terms iθ  and 

iju  were drawn from (0,.1)N  and (0,.9)N  distributions, respectively; and ijε  was drawn from a 

(0,1)N  distribution. The observed binary outcome ijY  was then set to 1 if * 0ijY >  and * 0ijR >  and 

to 0 otherwise. The model parameters were estimated using the ML procedures discussed in this 

article for various model specifications, assuming 30 schools and 75 students per school (typical 

treatment or control group sample sizes used in education RCTs). Note that *
ijY  is not normally 

distributed, and thus, the simulations allowed for some specification error in the model 

distributional assumptions. 

The β  parameters were set to yield true failure rates that (1) averaged to 50 or 80/20 percent 

and (2) fell within a preset percentage point range for 95 percent of the sample—which we refer 

to as the “95-percent range”—and which determines the predictive power of the two covariates; 

this predictive power was assumed to be the same for each covariate. The β  parameters were all 

positive so that increases in each covariate were associated with increased failure probabilities. A 

similar procedure was used to set the γ  parameters. For example, to simulate (1) failure rates 

with a mean of 80 percent and a 95-percent range of ±20 percentage points and (2) a constant 

misreporting rate of 10 percent, we set 0 1.073β = , 1 2 .518β β= = , and 0 1.282γ = . For each 

model specification, we obtained 1,000 simulated data sets, estimated the model parameters 

using ML methods for each one, and computed estimated failure and misreporting rates.   

Table B.1 displays simulation results for correctly specified models where both the data 

generating and estimation models included the same covariates. In these simulations, the 

misreporting models either included no covariates (the first row in each sequence) or the 
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1 1ij ijX Q=  covariate with various 95-percent ranges. The table entries display average simulated 

failure rates (SFRs) and average simulated misreporting rates (SMRs) across the simulations.  

The results from Table B.1 suggest that the SFRs and SMRs are close to true values, 

although the SMRs stray further from the truth as the variance of misreporting rates increases 

across the sample. Importantly, these results hinge critically on the predictive power of the 

covariates in the failure rate model; SFR and SMR biases become noticeable if the 95-percentage 

point range for the true failure rates are smaller than those displayed in the table (not shown). 

Thus, the double hurdle model should only be used if the study has available baseline covariates 

that have considerable explanatory power in the failure rate models. One way to check this is to 

examine the distribution of predicted failure probabilities from the probit model.     

Table B.2 displays simulation results for misspecified models where the data were generated 

using models that included the 1ijX = 1ijQ covariate, but where the estimation models excluded 

this covariate. The results indicate that even with misspecification, the SFRs are close to true 

values unless 1ijX  has significant predictive power in the misreporting model. The SMR results, 

however, are more sensitive to misspecification, and SMR biases become large when the 

misreporting rate varies substantially across the sample (that is, when the omitted 1ijX  covariate 

matters).  

 

 

 

 

 



32 

 

TABLE B.1 
Simulated Failure Rates (SFRs) and Simulated Misreporting Rates (SMRs) for Correctly Specified Models 
 
 True Failure Rate (Percents) and the 95-Percent Range (Percentage Points) 

True Misreporting Rate 
(Percents)  and the              
± 95-Percent Range 
(Percentage Points) 

50%  80 or 20% 

±35  ±50   ±20  ±40b 

SFR SMR SFR SMR  SFR SMR SFR SMR 

5%a 50.4 5.6 49.9 4.8 79.9 4.9 80.0 5.0 
5% ±5  51.5 6.3 50.1 5.1 80.0 4.7 80.0 4.9 
5% ±10 51.6 6.4 50.1 5.0 80.1 4.9 79.9 4.7 
         
10% a  50.1 9.9 49.9 9.9 79.9 9.8 79.9 9.9 
10% ±5 50.8 10.5 50.1 9.9 79.5 9.2 79.9 9.7 
10% ±10 51.6 12.0 50.0 9.6 79.8 9.2 79.8 9.2 
         
20% a  49.7 19.1 50.0 20.0 79.6 19.5 80.0 20.0 
20% ±5 50.1 18.8 50.0 19.8 78.9 18.5 79.5 19.3 
20% ±10 50.4 18.9 49.9 19.4 79.3 18.6 79.8 19.2 
20% ±20 50.9 18.4 50.0 18.0 79.0 16.5 79.4 17.2 

 
Notes: SFR (SMR) figures pertain to average estimated failure (misreporting) rates across the simulations for correctly specified 
models where the data generating and estimation models contained the same covariates. The simulations assumed 30 treatment or 
control schools and 75 students per school. See text for formulas and other assumptions.   
 
aFigures in these rows pertain to models with constant misreporting rates across sample members. 

bThe upper value of the 95-percent range is 100 percent for this specification, whereas the lower value is 40 percent. 

 
TABLE B.2 
Simulated Failure Rates (SFRs) and Simulated Misreporting Rates (SMRs) for Misspecified Models 
 
 True Failure Rate (Percents) and the 95-Percent Range (Percentage Points) 

True Misreporting Rate 
(Percents)  and the              
± 95-Percent Range 
(Percentage Points) 

50%  80 or 20% 

±35  ±50   ±20  ±40b 

SFR SMR SFR SMR  SFR SMR SFR SMR 

5% ±5  49.6 4.1 49.1 2.9 77.8 2.1 78.0 2.3 
5% ±10 49.8 4.6 49.0 2.5 77.8 2.0 77.7 1.8 
         
10% ±5 48.7 7.3 49.1 8.1 77.0 6.3 77.6 7.0 
10% ±10 48.2 5.6 47.9 4.7 74.7 2.8 74.9 3.0 
         
20% ±5 47.9 15.9 49.0 18.2 76.8 16.5 77.4 17.2 
20% ±10 45.4 10.9 47.9 15.9 72.9 11.8 74.3 13.4 
20% ±20 44.0 5.3 45.1 7.3 67.3 2.9 67.9 3.4 

 
Notes: SFR (SMR) figures pertain to average estimated failure (misreporting) rates across the simulations for misspecified 
models where the data generating model included 1ijX = 1ijQ  as a covariate, but where the estimation model excluded this 

covariate. The simulations assumed 30 schools and 75 students per school. See text for formulas and other assumptions.   
 
bThe upper value of the 95-percent range is 100 percent for this specification, whereas the lower value is 40 percent. 
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TABLE 1 
Descriptive Statistics for the Baseline Covariates Used to Predict Arrest Rates, by Treatment Status (Percentages) 
 
Baseline Covariate Pertaining to  
the Random Assignment Date (Program Eligibility Date) 

Treatment        
Group  

Control         
Group  

p-value of Significance 
Test of Difference  

Male 58.9 59.4 0.212 

Age 
   

16 to 17 40.8 41.4 0.417 
18 to 19 32.0 32.1 0.986 
20 to 24 27.1 26.5 0.418 

Race/Ethnicity 
   

White, non-Hispanic 28.4 27.2 0.468 
Black, non-Hispanic 47.1 47.3 0.468 
Hispanic 16.9 17.4 0.906 
Other 7.7 8.0 0.853 

PMSA or MSA Residence Status 
   

In PMSA 30.2 30.8 0.864 
In MSA 47.2 46.6 0.778 
In neither 22.7 22.7 0.866 

Has Natural Children  18.3 18.3 0.795 

Lives with Spouse or Partner 6.4 6.6 0.697 

Education 
   

High school diploma 18.6 18.5 0.745 
GED 4.8 5.3 0.219 
Neither 76.6 76.2 0.744 

Not in School in the Prior Year 39.1 38.2 0.317 

Employment 
   

Never had a full-time or part-time job 20.2 21.5 0.149 
Employed in the past year 64.9 64.2 0.597 
Not currently employed 78.0 78.9 0.294 

Mother Was the Head of the Household When the 
Student Was 14 Years Old  

47.5 48.4 0.351 

Mother Has a High School Credential 54.0 54.2 0.701 

Family Was on Welfare Most or All of the Time When 
Growing Up  

19.3 19.3 0.941 

Household Received Food Stamps in  Past Year  42.6 43.0 0.710 

Had Physical or Emotional Problems That Limited the 
Amount of Work That Could Be Done 

4.7 5.3 0.168 

Ever Arrested or Charged with a Delinquency or Criminal 
Complaint 

26.3 26.4 0.689 

Sample Size 6,350 4,150 10,500; 105 Centers 
 
Source: NJCS Baseline Survey Data  
 
Notes: All figures are weighted to adjust for the sample and survey designs and interview nonresponse, and p-values are adjusted 
for center-level clustering and design effects due to unequal weighting. 
 
*Treatment-control difference in the percentages is statistically significant at the 5 percent level, two-tailed test.    
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TABLE 2 
Regression-Adjusted Marginal Arrest Rates, by Treatment Status and Model (Percentage Points; Standard Errors in 
Parentheses) 
 

 Random Effects Probit Model  Double Hurdle Model 

Baseline Covariate Treatments Controls Treatments Controls 

Male    20.4 (1.2)*+ 24.6 (1.5)*  22.0 (3.2)*  25.7 (4.3)* 

Age (20 to 24 is left-out state) 
    

16 and 17  13.8 (1.9)* 13.9 (2.4)*  17.6 (3.5)*  15.4 (3.6)* 
18 and 19    5.3 (1.6)*   7.0 (2.1)*    7.3 (1.9)*    7.9 (2.3)* 

Race/Ethnicity (Hispanic is left-out state) 
    

White, non-Hispanic  3.1 (1.9)   5.2 (2.4)*   4.9 (2.0)*    7.0 (2.6)* 
Black, non-Hispanic  2.8 (1.8) 4.1 (2.2)   4.5 (1.6)*    5.2 (2.0)* 
Other  0.8 (2.6) 5.5 (3.5)   1.7 (2.3)    2.8 (2.9) 

In PMSA or MSA (In PMSA is left out) 
    

In MSA  2.0 (1.4) 0.7 (1.9)   0.8 (1.2)  -0.2 (1.6) 
In neither PMSA or MSA   2.5 (1.7) 3.2 (2.3)   3.7 (1.6)*   2.7 (2.0) 

Has Natural Children  -1.9 (1.7) 3.5 (2.4)  -1.3 (1.5)   3.0 (2.0) 

Does Not Live with Spouse or Partner  0.3 (2.5) -0.2 (3.3)   3.3 (2.2)  -0.4 (2.8) 

Education (High school diploma  is left out ) 
    

GED   4.7 (3.1)     8.4 (4.0)*   2.3 (2.6)   9.8 (3.4)* 
No high school credential    7.5 (1.7)*    7.6 (2.2)*   6.7 (1.7)*   9.2 (2.2)* 

Not in School in the Prior Year  1.8 (1.3)  0.5 (1.7)   4.9 (1.5)*+   0.7 (1.4) 

Employment 
    

Never had a full-time or part-time job -0.1 (2.0) 2.5 (2.6)   2.3 (1.9)   1.7 (2.2) 
Employed in the past year  1.4 (1.7) 1.1 (2.3)   2.9 (1.6)   2.4 (1.9) 
Not currently employed  2.7 (1.5) 3.1 (2.0)   3.7 (1.5)*   4.7 (1.9)* 

Mother Was the Head of the Household 
When the Student Was 14 Years Old  

 0.3 (1.2) 0.2 (1.6)   0.7 (1.1) -0.2 (1.3) 

Mother Has a High School Credential 1.0 (1.2) 3.0 (1.5)   2.0 (1.1)   4.2 (1.7)* 

Family Was on Welfare Most or All of the 
Time When Growing Up  

0.8 (1.6) 0.9 (2.0)   1.1 (1.5)   2.7 (1.9) 

Received Food Stamps in  Past Year   3.8 (1.3)*   4.3 (1.7)*   5.5 (1.5)*   5.3 (1.8)* 

Had Physical or Emotional Problems That 
Limited the Work That Could Be Done 

4.7 (2.9) 4.1 (3.5)   6.2 (3.2)*   8.0 (3.8)* 

Ever Arrested or Charged with a Delinquency 
or Criminal Complaint 

 17.2 (1.5)* 15.5 (1.8)* 20.5 (3.6)* 17.4 (3.9)* 

Variance of Random Effect (Theta) .008 (.06) .017 (.01) 0.001 (0.08) .014 (.04) 
-2*Log Likelihood Value 
Sample Size 

10,560           
6,350 

7,130           
4,150 

10,540 
6,350 

7104 
4,150 

 
Source and Notes: See Table 1  
  
*Difference between the regression-adjusted arrest rate for the subgroup relative to the rate for left-out subgroup is statistically 

significant at the 5 percent level, two-tailed test.    
 
+Difference between the regression-adjusted arrest rates for the treatment and control groups is statistically significant at the 5 
percent level, two-tailed test.    
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TABLE 3 
Estimated Misreporting Rates from the Double Hurdle Model for the Self-Reported Non-Arrestees, by Treatment 
Status and Model Specification (Percentages; Standard Errors in Parentheses) 
 
 Misreporting Rates 

Model Specification 
Treatment  

Group 
Control        
Group 

Estimated        
Impact 

1: All qijQ
 
covariates shown in Table 1; No  qijX

 
covariates beyond the intercept 

9.4             
(1.1)* 

6.4            
(1.3)* 

3.0          
(1.7) 

    
2: Same as Model 1 except qijQ  excludes the prior  
arrest indicator 

4.4             
(2.1)* 

0.0            
(0.0)  

4.4         
(2.1)* 

    

3: Same as Model 1 except qijX
 
includes race/ethnicity 

indicators 
10.3            

(1.0)* 
8.3            

(1.2)* 
2.0          

(1.3) 
Sample Size 6,350 4,150 10,540; 105 

Centers 
 
Source: NJCS baseline and follow-up interview data.  
 
Notes: See Table 1 and text for estimation details.  
  
*The estimated misreporting rate or impact is statistically significant at the 5 percent level, two-tailed test.    
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TABLE 4 
Estimated ATEs on the Arrest Rate, by Model Specification (Percentages; Standard Errors in Parentheses) 
 

Model Specification and Estimator 

Treatment  
Group Mean 
Arrest Rate 

Control        
Group Mean 
Arrest Rate 

Estimated              
Impact 

Standard Random Effects Model 29.0 32.3 -3.3 (0.84)* 
    
Double Hurdle Model    

1: All qijQ
 
covariates shown in Table 1; No  qijX

 
covariates beyond the intercept 

  

 
Ratio Estimatora 31.9  34.5 -2.6 (0.60)* 

Direct ML  Estimatora 32.7 33.3 -0.6 (0.60) 

2: Same as Model 1 except qijQ  excludes the prior   
arrest indicator 

  

 
Ratio Estimatora 30.3 32.3 -2.0 (0.67)* 

Direct ML Estimatora 30.7 32.3 -1.6 (0.67) 

3: Same as Model 1 except qijX
 
includes 

race/ethnicity indicators 

  

 

Ratio Estimatora 32.3 35.3 -3.0 (0.59)* 

Direct ML Estimatora 33.0 34.2 -1.2 (0.58)* 

Sample Size 6,350 4,150 10,540; 105 Centers 
 
Source: NJCS baseline and follow-up interview data.  
 
Notes: See Table 1 and text for estimation details.  
 
a The ratio estimator uses Equations 6 and 8 and the direct estimator uses Equations 20 and 24. 
  
*The estimated impact is statistically significant at the 5 percent level, two-tailed test.    
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