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Abstract 
 
In this paper, I seek to address the question of whether –and how– collaborative 

governance improves environmental outcomes. I use a representative watershed quality data 
series, the EPA’s National Rivers and Streams Assessment (NRSA) and Wadeable Streams 
Assessment (WSA), in conjunction with a watershed management regime database produced and 
coded for this analysis, to analyze the relationship between collaborative governance and 
watershed quality for 357 watersheds. To test this relationship, I employ a hierarchical linear 
regression modeling (HLM) that links specific collaborative policy features (not solely the 
presence of a collaborative group, but rather what management role(s) the group serves, group 
outputs, group membership, and other relevant characteristics) relate to water quality and 
watershed health. The overarching research question for this project is how does the form and 
structure of collaborative management relate to environmental outcomes? While I find that 
collaborative groups are strongly associated with environmental improvements in a 
watershed, it is not necessarily clear what accounts for this predicted impact. I find limited 
evidence that groups engaged in policy making and management are more effective than groups 
that serve as coordinative bodies or information forums, and that having a dedicated coordinator 
generally increases a group’s predicted impact on environmental conditions. However, I also find 
mixed evidence concerning stakeholder diversity, technical advisory groups, group codification, 
and goal formalization. The central takeaway is that policy scholars and practitioners need to 
think more deeply about why we believe that collaborative groups are an effective vehicle for 
service delivery and how such delivery can be improved.  

 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 tscott1@uw.edu; 253.632.3362 



2	
  
	
  

Introduction 
 
“Collaboration” and “collaborative governance” are normatively popular concepts that 

have been widely employed in environmental policy applications worldwide. Collaboration has 

been shown to enhance knowledge acquisition and foster belief change amongst stakeholders 

(e.g, Leach et al. 2013) and generate funds and support for alternative policy measures when 

problems are too diffuse or difficult to address via regulation (e.g., Margerum 2011). However, 

most of what we know about the effects of collaborative governance comes from process 

evaluations (assessing the quality of the collaborative process itself) or intermediate outcome 

evaluations (assessing the achievement of non-tangible outcomes such as knowledge acquisition 

or tangible outcomes such as project funds) (Carr et al. 2012). We still know very little about the 

effect of collaboration on resource management outcomes (Carr et al. 2012; Koontz and Thomas 

2006). As a result, there is also a deficit of rigorously tested theory that would enable policy 

makers to wield collaborative governance as a strategic, context-appropriate policy tool to 

achieve resource management goals.  

In this paper, I use one of the most common applications of collaborative governance,the 

management of watersheds and river basins (Sabatier et al. 2005; Margerum 2011), to explore 

my research questions. Using a representative watershed quality data series, the EPA’s National 

Rivers and Streams Assessment (NRSA) and Wadeable Streams Assessment (WSA), in 

conjunction with a watershed management regime database that I have produced and coded, I 

analyze the relationship between collaborative governance and watershed quality for 450 

watersheds. I argue that if collaborative governance is to be environmentally beneficial, then we 

need to view it as specific, context-appropriate policy tools that are more –or less- warranted in 

particular applications. In other words, we need to design, and implement collaborative 
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governance just we design and implement individual tradable fishing quotas, regulations 

governing water pollutant release, and conservation easements. Thus, the overarching research 

question motivating this analysis is: to what extent does the form and structure of collaborative 

management relate to environmental outcomes?   

In what follows, I first describe how this analysis fits within—and builds upon—the 

extant literature. Specifically, I embed my analysis within the policy tools framework developed 

by Salamon (2002). Next, I outline my hypotheses, taking care to describe the theoretical 

rationale on which they are based. I then detail my data collection process and coding scheme, as 

well as the data I use to model environmental outcomes. These data, from both primary and 

secondary sources, provide rich covariates that allow me to tease out the relationship between 

collaborative watershed management and environmental outcomes. This is followed by a 

description of the model I employ to test my hypotheses. In describing the model, I also explain 

why hierarchical linear modeling is appropriate given my data and research questions. I then 

present and discuss the results of my analysis. Finally, I conclude with a discussion of broader 

implications and future directions for this research. In the next section, I address the theoretical 

rationale for this work:  

 
 

Rationale 
 
As I briefly outline above, I believe that collaborative management is appropriately 

viewed as a “policy tool,” i.e., “an instrument or means used to address public problems” 

(Salamon 2002, 2). I find that the current theory and evidence about the use of collaborative 

management in environmental policy is insufficient in this regard. In terms of providing 

empirical guidance for design and implementation, we still know very little about the effect of 
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collaboration on resource management outcomes (Carr et al. 2012; Koontz and Thomas 2006). 

While the increasing diversity of policy tools (including grants, tradable permits, payments for 

services, and public-private partnerships) can provide flexibility and opportunity, it also presents 

a challenge, as policy makers must decide not only whether to act, but which tool to select. Each 

policy tool possesses “its own decision rules, rhythms, agents, and challenges” (Salamon 2002, 

6), and thus must be carefully chosen, designed, and implemented. For instance, founding 

legislation and group charters accord specific management responsibilities, set membership and 

representational standards, and frame decision-making criteria (e.g., majority vs. consensus) for 

collaborative management groups. Currently, the literature cannot speak definitively to the 

tradeoffs –in terms of function and effectiveness—inherent to these design choices.   

As a wide and growing body of literature attests, many scholars are interested in studying 

the role and impact of collaborative governance. Collaboration has been shown to enhance 

knowledge acquisition and foster belief change and trust amongst stakeholders (e.g, Leach et al. 

2013; Lubell et al. 2010), and to raise funds and support for alternative policy measures when 

policy problems are too diffuse or difficult to address via regulation (e.g., Margerum 2011). 

However, most of what we know about the effects of collaborative governance comes from case 

studies and survey methodologies that evaluate the process (assessing the quality of the 

collaborative process itself) or intermediate outcomes (assessing the achievement of non-tangible 

outcomes such as knowledge acquisition or belief convergence) of collaborative management 

(Carr et al. 2012). Findings about the environmental outcomes caused by collaborative 

management, however, have been more limited. Several case studies have identified 

environmental gains resultant from the use of collaborative groups in management, and also 

collaborative groups that have not achieved meaningful environmental change (e.g., Carr et al. 
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2012; Margerum 2011). These studies do provide causal narratives about the environmental 

effects of the collaborative groups studied. However, from a policy perspective, it is difficult to 

operationalize these results, since they do not necessarily produce operable findings that can 

directly inform whether –and how– policy makers use collaborative groups as a policy tool in 

other settings. Thus, there is a deficit of rigorously tested theory that would enable policy makers 

to wield collaborative governance as a strategic, context-appropriate policy tool in order to 

achieve resource management goals such as improved or maintained water quality.  

The empirical premise of my research is that publically supported collaborative 

management efforts should be structured and implemented on the basis of demonstrated 

environmental impacts. Currently, such efforts are hindered by a lack of data connecting 

collaborative management to environmental impacts. In order to test this connection in a policy-

relevant fashion, it is first important to conceptualize the choices policy makers face when 

choosing to support or engage in collaborative management. I propose a typology that reflects 

key managerial decisions, such as whether a collaborative group engages in information sharing, 

planning, or policy implementation, and the level of inclusiveness or diversity of group 

membership (e.g., inter-agency workgroup or multi-sector group that involves private and/or 

non-profit actors). The current collaborative governance literature contains numerous typologies, 

but these largely concern the policy scale at which a group operates instead of functional and 

structural characteristics of collaborative management itself.  

Perhaps the most prominent and useful existing typology is that of Margerum (2008; 

2011), who distinguishes between the institutional scales on which collaboration occurs; 

however, applying collaborative management as a purposeful policy tool requires what might be 

termed a within-level approach. In other words, while Margerum’s typology speaks to the 
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institutional context(s) in which collaborative occurs, it does not distinguish between the choices 

policy makers face when electing to implement collaborative governance within a given level. 

Similarly, Moore and Koontz (2003) characterize groups in terms of composition (e.g., agency-

based or stakeholder based), but I am purposely interested in groups that are inherently agency-

based to on extent or another. Other scholars (notably Ansell and Gash [2008] and Emerson et al. 

[2012]) have developed theoretical frameworks for collaborative governance that speak to issues 

of institutional design. However, these frameworks do not distinguish between specific policy 

choices but rather identify key variables, such as participatory inclusiveness and stakeholder 

incentives, which mediate outcomes. Thus, a theoretical perspective of collaborative 

management as a policy tool requires a new typology that accounts for functional characteristics 

such as group responsibilities and structural characteristics such as group membership in a way 

that reflects the concrete choices policy makers face.  

 

Hypotheses 

My primary hypothesis is that the characteristics of collaborate watershed management 

groups impact the effect a group has on water quality outcomes. Based on this broad hypothesis 

I test four dimensions of collaborative watershed management: (H1) the level of management 

responsibility accorded to the collective (‘Group Responsibility’); (H2) the inclusivity of 

representation in the group (‘Stakeholder Representation’); (H3) group formalization 

(‘Formalization’); and (H4) the primary source(s) of group funding (‘Funding Source’). These 

variables are empirically relevant because conflicting evidence obscures how participation 

incentives and institutional design impact the effectiveness of collaborative management (Ansell 

and Gash 2008; Heikkila and Gerlak 2005; Newig and Fritsch 2009). In the reminder of this 
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section, I provide a brief overview of each sub-hypothesis and orient each within the 

collaborative governance literature. Before proceeding, however, it is important to note that these 

hypotheses are not mutually exclusive; any combination or subset of these characteristics can 

conceivably be shown–or not shown—to enhance the impact of a collaborative group on water 

quality.   

Group Responsibility (H1) contrasts groups that serve as coordinating bodies or engage 

in outreach or monitoring from groups that participate in planning and on-the-the ground 

projects, and further from groups that have actual management responsibilities such as 

rulemaking, enforcement, and policy implementation. Ansell and Gash hypothesize that 

incentives to manipulate and act co-optively are checked in situations in which actors expect to 

engage in ongoing cooperation (2008, 560). This is in keeping with the broader literature on 

collection action, which finds that a longer time horizon is necessary to foster norms of 

reciprocity (e.g., Ostrom 2000). An empirical example of this within collaborative watershed 

management is the responsibility accorded to a given watershed group. Some groups are formed 

for relatively short-term tasks, which, even when repeated, do not require ongoing cooperation. 

For instance, a group that simply meets once a year to discuss what member organizations are 

engaging in does not require the level of cooperative behavior necessary for a group that shares 

ongoing management responsibility. Generally, the literature holds that increasing the intensity 

of interactions (e.g., from information sharing to planning to joint implementation) requires 

greater stakeholder engagement and investment (Margerum 2011; Sabatier et al. 2005b; 

Wondolleck and Yaffee 2000): such heightened activity should result in improved environmental 

conditions.  

Stakeholder Representation (H2) considers collaborative governance bodies on a 
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spectrum in terms of whether a group is comprised solely of local governments (cities, counties, 

and special districts) versus including higher-level institutions (e.g., state and Federal agencies) 

and external organizations such as tribes, businesses, agricultural interests, non-governmental 

organizations (NGOs), universities, and technical advisory groups. There is conflicting evidence 

about the efficacy of increasing stakeholder representation and gaining greater input from a 

wider array of experts: On one hand, some find that incorporating non-state actors leads to more 

ecologically rationale decision-making (Dryzek 1997; Smith 2004), improved compliance 

(Sabatier et al. 2005), and more effective implementation (Burby 2003; Carlson 1999). However, 

ttempting to incorporate the interests and knowledge of all relevant stakeholders, however, can 

also result in diluted plans and policies that reflect the lowest common denominator of consensus 

(Coglianese 1999; Koontz et al. 2004).  

Formalization (H3) reflects the extent to which a group possesses structural 

characteristics such as a dedicated coordinator or group bylaws, as well as the extent of mission 

formalization (mission statement, itemized goals, or itemized objectives).  Groups achieve 

greater environmental gains with increased resource support generally (Curtis and Byron 2002; 

Parker et al. 2010; Yaffee et al. 1996), but it is less clear how specific expenditures, such as 

hiring a dedicated coordinator or developing a group constitution, alter the environmental impact 

of a group. Groups that have a dedicated coordinator are hypothesized to have greater impact, as 

the coordinator can increase administrative support and ease group tensions (e.g., Imperial 2005; 

Huxham and Vangen 2000; Margerum 2002; Susskind and Cruikshank 1987; Susskind et al. 

1999). Similarly, bylaws are hypothesized to enhance group stability and regulate function. 

Lastly, increased plan and objective formalization is hypothesized enhance group effectiveness 
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(in terms of improved water quality) by enabling groups to better assess their efficacy and better 

focus their efforts (Innes and Booher 1999; Margerum 2011; Wondolleck and Yaffee 2000) 

Finally, Funding Source (H4) refers to primary sources of group funding, namely local, 

state, or Federal. The literature speaks to the necessity of “achieving ‘buy in’” (Ansell and Gash 

2008, 560) amongst participants even when collaborative governance is mandated. This raises a 

series of interesting questions for policy makers about how one might foster such an attitude 

amongst stakeholders. One empirical difference that inductively emerges from this research is 

that of group funding sources. Many watershed groups are funded by grants and other support 

stemming from state agencies and Federal sources such as Clean Water Act funds or the Natural 

Resources Conservation Service. In numerous other cases, watershed collaborative groups are 

more greatly supported by local municipalities and districts, area stakeholders, and private sector 

organizations. I hypothesize that groups with greater local support will be more strongly 

associated with improved water quality because participants in such groups have more “skin in 

the game.” In other words, participants commit their own resources to the group, and thus have a 

vested interest in group function. 

 
 
Model 

 
The use of a hierarchical multilevel model (see Gelman and Hill 2006; Raudenbush and 

Bryk 2001) is crucial to answering my research question for several key reasons. In this section, I 

first describe the theoretical rationale for using a multilevel approach. I then describe how a 

multilevel model is particularly appropriate given the analysis context at hand. Following this 

discussion, I detail my empirical approach and modeling assumptions. Finally, I present model 

specifications.  
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Given the connectivity of watersheds and ecosystems, a sample site (on a specific reach 

of a specific stream) is obviously not wholly independent of nearby sites (whether sampled or 

not); thus, one would expect sites from the same stream or watershed to be more similar to each 

other than two geographically disparate sites. Likewise, water condition samples taken in 

multiple time periods from the same site are likely to be correlated as well. A standard regression 

approach for addressing this lack of independence amongst samples would be to fit an indicator 

(i.e., a fixed effect) for each site or for each basin. However, there are only two periods available 

for each of the 357 repeated samples contained in the WSA and NRSA data, and in many cases 

there are only one or two sample sites within a given river basin. This means that the conditional 

group mean for each site or basin is likely to be poorly estimated given the small sample size.  

In contrast, the multilevel model takes into account the estimation uncertainty associated 

with each group-level adjustment (Gelman 2006). Instead of fitting a group adjustment based 

solely on the conditional within-group mean (as does a traditional fixed-effects model, which 

effectively serves to treat each group as its own distinct dataset), a multilevel model shrinks the 

group-level adjustment towards the sample mean as the size of the group decreases. In other 

words, as the within-group sample size decreases, the model places more credence upon the 

whole sample estimate, and vice versa. This avoids overstating differences between groups, since  

the multilevel model takes account of the higher potential for the within-group means in such 

cases to be driven by non-representative outliers.  Accordingly, for data in which individual 

observations are nested within higher-level groupings, a multilevel model produces more 

reasonable inferences than does a classic fixed effects model (Gelman 2006).  

A hierarchical multilevel model is also necessary for this analysis because it facilitates 

simultaneous analysis of variance at the sample level, sub-basin level, and state level. Fixed 
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effects do not allow for further inference on a grouping variable, since this variation is 

“unmodeled” (Gelman and Hill 2006). A multilevel approach allows me to: (1) examine the 

effect of sample-level, sub-basin level, and state-level covariates; and (2) test for cross-level 

interactions, such as the relationship between particular collaborative management characteristics 

and state governance. Fixed effects models cannot achieve this type of analysis, because a group-

level variable becomes collinear with the grouping indicators. Essentially, a hierarchical 

multilevel model accounts for expected correlation between repeated measures and proximate 

sites while still preserving the ability to model higher level (state and sub-basin) effects.  

Modeling watersheds raises an additional analytical challenge in that watersheds are 

nested within both physical and administrative boundaries, yet these grouping factors are 

themselves not nested. Watersheds are defined according hydrological relationships; thus, they 

sometimes overlap with state or county boundaries, but typically do not. Any two sample pairs 

could be in the same state, but different watersheds, or in the same watershed, but in different 

states. Accordingly, I fit a cross-classified multilevel statistical model (Gelman and Hill 2006; 

Raudenbush and Bryk 2001) that groups observations both by 47 states (excluding Hawaii, 

Alaska, and Florida2) and by 148 4-digit Hydrologic Unit Code (HUC4) sub-basins.3 Figure 1 

provides a visual demonstration of how individual sample sites are cross-classified within two 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Most streams in Florida are coastal and thus tidally influenced, thus excluding them from the criteria for the WSA. 
Accordingly, Floridian streams were less likely to be selected for an original WSA sample, and even less likely to be 
selected for a follow-up sample under the NRSA. As a result, the 357 repeat observations do not include Florida. 
3 The Hydrological Unit Code (HUC) taxonomic system has numerous levels, from 2-digit to 12-digit identification 
numbers denoting hydrological regions of increasingly smaller scale. Thus, there are numerous HUC levels within 
which a given sample site is nested; HUC4 and HUC8 designations are among the most commonly employed 
analytical scales. I elect to group samples within HUC4 “sub-regions.” An HUC4 sub-region encompasses several 
HUC8 “accounting units,” which are the primary unit in which watershed data are reported. For instance, Puget 
Sound in Washington state is one HUC6 (1711), as is the Lower Yellowstone River (1010) and the Potomac River 
(0207). Grouping by HUC4 accounts for likely correlation between streams in a given basin, while allowing for each 
group to have an assortment of streams that are managed collaboratively and those that are not. Since most HUC8 
accounting units have just one sample site (sampled under both the WSA and NRSA), there is no effective way to 
have treatment and control groups at that smaller level. Further, having several more observations per group 
facilitates more accurate estimation of inter-group differences. 
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different second level groupings (sub-basin and state). Variance is then modeled at each of the 

three levels shown in Figure 1.  

 

Figure 1: Graphical Presentation of Cross-Classified Model 

My approach for modeling the association between collaborative management and water 

quality is to treat collaborative management as a policy intervention, much as we might treat a 

scholarship offer to a student or a new training program at a welfare-to-work site. I identify 105 

unique groups across the 357 sample sites included in both the WSA and NRSA. Since many 

groups encompass more than one sample, however, another way of summarizing this is that I 

observe 259 samples (out of 714 total samples) for which there is an active collaborative 

management group (defined as existing prior to the sample year). The model effectively contrasts 

this treatment group (streams managed under a collaborative regime) with a comparison group of 

streams not associated with any sort of collaborative management structure. Along with 

estimating the direct effect of an active collaborative management group on water quality, I 

estimate how various group features and characteristics affect the predicted impact of a group 

using a series of interaction terms. I am able to examine how the predicted effect of a 

collaborative group varies according to the types of responsibilities given to a group or according 
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to the types of stakeholders included. These interaction terms provides a more meaningful –and 

empirically grounded—interpretation, since the effect of any specific management characteristic 

should rightfully be expressed through the presence of the collaborative management regime and 

not independently.  

Further, there is a temporal component to this analysis as well. The various outputs of a 

collaborative group such as plans or joint projects would not likely have an immediate effect; 

instead, it is likely that such an effect would take time to be realized. Thus, I employ several 

different specifications for the presence of an active group: (1) a binary indicator of whether or 

not a collaborative group is active in the watershed; (2) a binary indicator of whether or not a 

collaborative group has been active at least five years prior to the sample year; (3) a binary 

indicator of whether or not a collaborative group has been active at least ten years prior to the 

sample year; and (4) a continuous variable of the number of years that a group has been active in 

the watershed prior to the sample year.  

At the first level of the model I estimate a water quality index score for individual stream-

year i in sub-basin w and state s: 

 

 
 
where Yi represents the dependent variable, a given quality metric (e.g., nitrogen level) 

for sample i. Accordingly, αw[i] represents the conditional intercept estimate for i given that it is 

watershed w; similarly, λs[i] represents the conditional intercept estimate for i given that it is in 

state s. The summation term that follows represents a vector of estimated effects associated with 

collaborative watershed management characteristics 1 to k associated with observation i 

(Collabki), conditional on the presence of an active group Ci. Next, δl represents a vector of 
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control parameters for observation-level stream characteristics 1 to l (Streamlji). Finally, τi 

represents the effect of sample year for sample i, and εiws represents the random error associated 

with observation i in basin w and state s.  

At the sample-year level outlines above, I fit controls for non-agricultural and agricultural 

disturbance, sample year, and mean wetted width of the stream. The disturbance metrics are 

intended to take account for factors that might result in a significant difference between the WSA 

and NRSA samples, such as the development of a stream-side property, fencing livestock from 

the waterway, or other proximate changes. Mean wetted width and sample year are intended to 

account for climatic factors such as rainfall that might cause water quality changes between 

samples.  

The conditional sub-basin-level impact, αw, is the dependent variable for the second 

model level: 

 

 
 
in which α0 represents the average outcome for across basins and πm represents the 

estimated effect of watershed characteristic m, including physical characteristics such as size and 

ecoregion, watershed stressor characteristics such as percent of watershed that is urbanized, 

population density, and road density, and management characteristics such as EPA region, state 

monitoring and enforcement metrics, and whether the watershed crosses a state or national 

boundary. Basin-level random error is denoted as μw. At this level, I fit watershed-level control 

variables for total watershed area, site elevation, percent of land area that is wetlands, percent of 

land area that is urban, that is wetlands, and that is forested, population density, and road density 



15	
  
	
  

(mean road length per watershed square mile).4 Each of these variables is log-transformed to 

account for a left-skewed distribution and achieve a more normal distribution. These data were 

calculated for the WSA, but not the NRSA, thus necessitating fitting these covariates at the 

watershed level. Given that no two samples are more than eight years apart, one would not 

expect a great deal of change in any case. Thus, the aforementioned variables are intended to act 

as controls for the overall context in which a sample was taken, while variables such as the 

human disturbance index (describe previously) account more directly for potential differences in 

water condition. Additionally, I fit controls for structural characteristics such as Strahler stream 

order and whether the watershed crosses a state or national boundary. 

The conditional state-level impact, λs is the dependent variable for the other non-nested 

second level of the model: 

 

 
 
in which γn  represents the estimated effect of state characteristic n, such as state 

monitoring and enforcement performance, ηs represents the modeled effect of an active 

collaborative group in state s, and μs represents state-level random error. For this alternative 

second (state) level, I will control for yearly spending by each state environmental agency and 

the number of inspections, violations, and enforcement activity by year and state. However, due 

to the continuing Federal government shutdown, these data are not available and will be included 

at a later date.  

To evaluate the utility of the multilevel model and verify the extent to which variation 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 In each case there are about 10 observations that are unrecorded; for each of these missing data points, I calculate 
the mean value for the given variable within the same ecoregion and impute this mean value for watersheds in the 
same region. 
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does occur at the second model levels, I compute the intraclass correlation coefficient (ICC). 

Since I fit two second-level grouping factors, state and sub-basin, the ICC is calculated by 

dividing the summed group level variance for both state and sub-basin by the sum of the group 

and individual level variances from the base model with no predictors:  

 
 
If all members within each group, the ICC equals 1 (since there is perfect correlation within each 

group); in such case, grouping obviously would add a great deal of explanatory power to the 

model. Conversely, if observations within a group are not correlated at all (thus, grouping adds 

no explanatory power to the model), the ICC equals 0 (Gelman and Hill 2006).  

For the six dependent variables fit in this analysis, Table 1 presents the ICC for each base model, 

in which the dependent variable is modeled solely as a function of the sub-basin grouping 

indicator: 

Table 1: Intraclass Correlation Coefficients 
 Phosphorus 

Level 
Nitrogen 
Level 

Turbidity 
Level 

Benthic 
MMI 

Riparian 
Cover 

Fish 
Cover 

ICC 0.446 0.630 0.395 0.371 0.510 0.283 

 
These ICC scores indicate that grouping by state and sub-basin lends a great deal of explanatory 

power to the model. For instance, almost 45% of all observed variation in total phosphorus level 

and almost 49% of all observed variation in riparian cover can be explained by the state and sub-

basin grouping indicators. Even for in-stream fish cover, which has the lowest ICC value, state 

and sub-basin can explain more than a quarter of all total variance. This speaks to the necessity 

of employing a multilevel model for this analysis.  
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In discussing hierarchical multilevel models, it is important to note that the standard 

heuristics applied to fitting parameters in ordinary least squares regression and similar (e.g., 

logistic) models, statistical significance, is inappropriate for determining which indicators to 

leave in and which to leave out (Gelman and Hill 2006, 271). For instance, the model(s) includes 

a grouping indicator for each sub-basin, not just the indicators found to be statistically 

significant. The reason is that I am interested not in examining the difference between groups, 

but rather in generating the best possible estimate, even if that comes at the cost of precision for 

many (non-significant) groups. What is of interest, however, is whether a given variable is a 

meaningful source of variation. For instance, 77 of the 105 unique groups identified have a 

dedicated coordinator, while only 28 of these groups have identified bylaws. In terms of 

objective formalization, 61 have a mission statement, 31 have itemized goals, and 13 have 

specific, measurable objectives. Out of eight potential stakeholder categories, 23 groups have 

three or fewer such members, 24 have exactly four types, 28 have five types, and 30 have six or 

more. Around half (55) of these groups draw a significant portion of funds from local 

organizations, 47 draw a significant portion of funds from state governments, and 28 receive a 

significant level of Federal support. One caveat is that specific “cells” representing particular 

combinations of variables are rather sparse. Table 2 presents an example of the 105 groups 

divided in terms of objective formalization, presence of a dedicated coordinator, and receipt of 

local funding: 

Table 2: Objective Formalization x Local Funding x Dedicated Coordinator 
 Local Funding < 30% of Total Local Funding > 30% of Total 
 No 

Coordinator 
Coordinator No 

coordinator 
Coordinator 

Mission Statement 3 8 2 18 
Itemized Goals 6 26 14 15 
Specific Objectives 1 6 2 4 
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As Table 1 demonstrates, for example, there are very few groups that have no coordinator and 

also receive a small proportion of their funds from local organizations. While the multilevel 

model mitigates many small sample size issues, I nonetheless fit covariates related to each 

hypothesis separately so to avoid overfitting. Further, in my analysis I emphasize broad level 

distinctions rather than comparisons between particular combinations of factors.  

 

Dependent Variables 
 
The data I use to assess water quality outcomes come from two national surveys, the 

Wadeable Streams Assessment (WSA) and the National Rivers and Streams Assessment 

(NRSA). The WSA, conducted in 2004-2005, sampled 1392 stream sites that were randomly 

selected from all streams of a given size within a ecological region. In other words, the sampling 

was stratified by ecological region and stream size.5  

This probability-based design was thus intended to allow for generalization by ecoregion 

and EPA region about ecological condition, using stratification to generate a representative 

sample and using weighting to account for length and other relevant factors. The key point here 

for my purposes is stream selection was conducted independently of management variables. In 

other words, the presence and/or type of collaborative management regime that governs a stream 

played no role in selection. This presents a unique opportunity for empirical research  since most 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 The WSA surveyed only perennial, wadeable streams. Perennial refers to streams that flow year round under 
conditions of normal precipitation. The WSA sampling protocol is stratified by Strahler stream order. “Wadeable 
streams,” i.e., those that can be sampled without using a boat, are generally considered to be of orders 1 through 5. 
However, Strahler ordering does not directly correspond to stream size; rather, the Strahler protocol orders models 
streams as directed graphs, analogous to a tree. Ordering proceeds in reverse from bottom to top, thus a “leaf” 
stream, i.e., one that has no tributaries, is of Order 1. The Ohio River is an 8th order stream, the Mississippi River is a 
10th order stream, and the Amazon River in South America is a 12th order stream. The sample was also stratified by 
the 9 (of 15 total) Omernik North American Level I ecoregions that occur in the continental United States, such as 
the Great Plains and Mediterranean California. 
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research on collaborative governance selects on either the independent (management 

characteristics) or dependent (outcome) variables.  

The NRSA, conducted in 2008 and 2009, employs a similar design, but expands the 

sample frame to non-wadeable rivers.6 In total, 1924 sites were sampled at random (within strata 

by size and ecoregion). As with the WSA, the NRSA’s probability-based design means that 

every stream or river had a known probability of being selected, which eliminates the potential 

for coverage error or non-response bias. The NRSA study design incorporates a revisit of sites 

sampled for the WSA, with 357 original WSA sites being re-sampled in 2008-2009. These 357 

sites are what I use in this analysis to conduct a longitudinal analysis. Each sample was 

conducted using a line-and-transect procedure that standardized data collection across all sample 

sites.  

The WSA and NRSA assess the ecological condition of each site according to a series of 

measurements of chemical stressors, metrics of physical condition, and biological indicators. 

These different variables provide a holistic view of stream condition. From these data, I select 

six variables to model as representing water quality and stream health: total phosphorus content 

and total nitrogen content (chemical stressors caused by human activities such as mining or 

agriculture), water turbidity and in-stream fish habitat (physical indicators reflect more 

proximate habitat destruction), and indices of riparian vegetation and benthic community 

abundance (biological indicators of condition).  

Total phosphorus and total nitrogen content are both measured in absolute terms, using 

micrograms per liter (ug/L) as units. Turbidity is measured in Nephelometric Turbidity Units 

(NTUs), using a tool called a nephelometer, which gauges the amount of light reflected by the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6 Generally of Strahler stream orders between 6 and 10.  
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particles in water. In the WSA and NRSA data, most sites fall between In-stream fish cover and 

riparian cover are both calculated using line-transect surveys which calculated the summed areal 

proportion of each cover type. For instance, to calculate fish cover the surveyor assesses 

coverage at specific points in a 10 meter by 20 meter littoral plot. These data are then used to 

estimate the areal proportion of the reach that contains natural cover for fish. Because this metric 

is a summation of the proportion of the reach that is covered by several different kinds of cover, 

including boulders, large woody debris, and overhanging vegetation, this value can be greater 

than 1. In the data used for this analysis, sites range in value for the variable from 0 to 2.58. 

Similarly, because riparian cover is a summation of the proportion of the streamside riparian area 

that is covered by canopy, mid-layer, and ground-level vegetative cover, this value can be greater 

than 1 as well. Sites range in value for this metric from 0 to 2.18 in the data.    

The benthic condition index is more complicated. To assess benthic condition, the WSA 

and NRSA generate an index for macroinvertebrate assemblage by assessing “least disturbed” 

sites in each ecoregion, using these sites as a baseline to estimate the “expected taxonomic 

composition of an [macroinvertebrate] assemblage in the absence of human stressors” (EPA 

2013; Hawkins et al. 2000) (also conditional on natural gradients such as elevation or stream 

size). Of course, there are numerous ways to assess the condition of a macroinvertebrate 

community, including abundance, composition, diversity, and various submetrics related to 

particular taxa. Further, the appropriateness and significance of these various metrics can differ 

by region. Thus, for each of the 9 ecoregions within which sampling was stratified, a particular 

subset of 6 benthic community metrics were chosen upon which to generate a macroinvertebrate 
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multimetric index (MMI) for each ecoregion (each individual metric is scored on a 1 to 10 scale, 

after which all six metrics are summed and then normalized to a 0 to 100 scale).7 

 
Independent Variables 

 
In order to develop a watershed management database, I examine (1) legislative 

documents that allocate management responsibilities and funds to groups; (2) group reports, 

mission statements, membership lists, and constitutional documents; and (3) watershed 

management plans (specifically the portion of each plan that discusses the use and role of public 

involvement) for each of the 357 watersheds that were sampled for both the NRSA and WSA. In 

very few cases are the majority of these sources available for a given watershed, so a primary 

challenge is to apply a uniform coding scheme to diverse sources.  

I proceeded to systematically coding the data as follows. The coding process for each 

watershed began at the EPA’s “Surf Your Watershed” site for the HUC8 designation associated 

with the observation.8 The page provided background information including the state(s) and 

county(ies) with land area in the watershed, the primary watershed name, and well as links to 

various monitoring websites and in some cases local watershed organizations. Armed with this 

background knowledge, I then proceeded to search for the documentation described above. All 

sources used to develop these data are available from the author and published in an appendix. I 

also employed geographic location data present in the WSA and NRSA datasets to examine the 

specific location of a sample site; since some collaborative groups pertain to specific streams or 

sub-basins, this was necessary to posit whether a given observation could appropriately be scored 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 For instance, in the Xeric Ecoregion (comprised of the Great Basin, much of Southern California, and the 
Intermountain West), the MMI incorporates metrics for Non-insect % Distinct Taxa, % Individuals in Top 5 Taxa, 
Scraper Richness, Clinger % Distinct Taxa, EPT Richness Distinct Taxa, and Tolerant % Distinct Individuals. In 
total, there are 21 different metrics that are part of the MMI for at least one ecoregion. 
8 http://cfpub.epa.gov/surf/locate/index.cfm 



22	
  
	
  

as under the influence of a given collaborative governance body.  This multi-source approach, 

taking advantage of the various resources available on state and Federal agency websites and 

databases, is quite similar (though expanded) to the approach used by Moore and Koontz (2003) 

to identify and survey watershed groups in the state of Ohio.  

In determining whether a watershed is considered for the purpose of this analysis to be 

managed collaboratively, I include only groups in which at least one governmental entity 

participates. Since the focus of this research is on the use of collaborative governance as a public 

policy tool, I am only interested in groups to which a public-sector entity devotes time and 

resources (since the ultimate question is whether such time and resources are being used 

effectively or might best be devoted elsewhere). This coding strategy proves inclusive, with only 

two prevalent types of watershed-oriented organizations being left out: (1) county resource 

conservation districts; and (2) local citizen groups that engage in watershed advocacy. Again, 

these types of organizations are not of interest in this particular study because I specifically focus 

on instances in which a public entity has chosen to devote resources towards collaborative 

governance.  

 

Variables of interest are coded as follows: 

Dedicated Coordinator: Groups were coded ‘1’ if the group does have a designated coordinator 

and “0” otherwise. This variable does not reflect the coordinator’s FTE nor the presence of group 

chairs, presidents, or other officers which are ubiquitous across watershed groups but do not 

carry administrative responsibilities.  

 

Objective Formalization: Group objectives are assigned one of three possible values: (1) 
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“mission statement”: a broadly conceived sentence (or paragraph) that provides a general 

statement about the impetus and aims of the group; (2) “goals”: itemized, but unspecific, tenets 

that the group proclaims to be aiming for (e.g., “I. Improve water quality in river; II. Increase 

awareness about environmental behavior in community.”); and (3) “objectives”: itemized 

statements that outline specific actions intended by the group and/or specific metrics by which 

the group is able to measure its output or outcomes (e.g., “Fund local restoration projects” or 

“Reduce the level of stream bank erosion”). These data are ordinal, in the sense that a group’s 

specific objectives implicitly represent goals, and goals implicitly represent a mission statement; 

in other words, this variable represents an increasing level of specificity and formality of a 

group’s mission.  This variable is modeled as series of factors in the regression model, with 

mission statement as the reference category. Primary sources for these data include group bylaw 

documents, charters, and group websites.   

 

Inclusiveness: As specified above, the baseline requirement for a watershed being coded as 

having a “collaborative management group” is that the group includes a public institution as a 

member. Thus, the “null value” for a group’s inclusiveness is a group that is comprised solely of 

local governmental representatives (as specified by published membership rosters, group bylaws, 

and annual reports). Groups are scored for the presence of tribes, businesses, local stakeholders 

(e.g., advocacy organizations), non-governmental organizations (e.g., Nature Conservancy), 

universities or colleges, agricultural interests, Federal agencies, and state agencies. A group 

receives either a “1” (present) or “0” (absent) reflecting membership by each other type of 

organization. For instance, any group that incorporates a tribe or tribal organization receives a 

“1” for “Tribal Presence,” and any group that incorporates a local business or representative of a 
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local business association receives a “1” for “Business Presence.” These values are then 

summed. Thus, if a group is constituted solely from representatives of local government, tribes, 

and the business community, then said group’s score for the number of stakeholder types 

included is a 2.   

 

Funding Source: Group annual reports and founding documentation are used to code for primary 

funding sources. For each of three categories (Federal, state, and ‘local’), a group for which at 

least 30% of their funds come from a given source are assigned a ‘1’ for that variable (thus, a 

group can have one, two, or three coded funding sources). Many collaborative groups are funded 

via a combination of local funds and grants from state and Federal agencies. Thus, I employ 30% 

as the threshold because I believe it is important to have a coding scheme that allows a group be 

recorded as having significant funding from two or even all three sources. Consider a 

hypothetical group, with a $1 million total budget, which receives $400,000 from the EPA, 

$350,000 from the state through rotating CWA grant funds, $300,000 from local organizations, 

and $50,000 from private donations. Simply coding this group as being Federally funded would 

greatly belie the true distribution of funding. One might expect that this group is duly influenced 

by its local, state, and Federal funding. I seek to capture this potential influence in the model.  

 

Group Bylaws: Groups for which a foundational document codifying responsibilities, 

membership requirements, group procedures, and similar constitutional details is published are 

given a ‘1’ for the presence of group bylaws. All other groups receive a ‘0’ for this variable.  

 

Responsibility Level: In order to develop a comprehensive coding scheme for the types of 
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responsibility policy makers accord to a collaborative group, I inductively identify seven general 

categories of tasks that emerge from the data: Planning, management, outreach, monitoring, 

coordination, projects, and education. Transaction costs theory (see Coase 1960) speaks to the 

monetary and non-monetary costs associated with inter-firm (or inter-organization) exchange. 

Cooperative efforts such as those described above require a combination of empirical resources, 

such as time, transportation, and contracting costs, and intrinsic resources, such as trust and 

social capital (Putnam 2000). In the framework of transaction costs theory, collaborative group 

activities such as joint policy implementation are more intensive than activities such as 

information sharing because they entail greater transaction costs (Margerum 2007; Wondolleck 

and Yaffee 2000).  

Consider, for instance, the difference between simply attending a quarterly meeting in 

which organizations discuss their activities and having to coordinate daily operations with other 

organizations. The formal and informal costs associated with an informational meeting are 

clearly much less than those associated with joint operations. Thus, of the group activities I 

identify, I code coordination and outreach to be the least intensive level of group responsibility. 

These codes represent groups that exist as information sharing forums, hold periodic 

informational events, and allow for informal consultation amongst members. While I anticipated 

that coordinative groups would receive a designation of limited responsibility, outreach activities 

emerge as a common group activity in my data collection and coding. I observe many 

collaborative groups that put on various forms of outreach events, such as a public awareness 

both at a local festival or holding a watershed awareness day; in such cases, collaborative activity 

is limited to the scope of these activities, and requires no ongoing collaboration or internal 

changes within participating organizations. Planning, programs (such as restoration activities or 
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ongoing anti-pollution programs), and ongoing monitoring conducted by groups are coded as 

medium intensity. These activities entail greater cooperation amongst members and greater 

resource expenditure by participants, but do not entail the same level of effort –or risk—as does 

the highest responsibility level I code, for groups that engage in joint management. These 

activities include permitting, rulemaking, enforcement, and policy implementation. Obviously, 

groups can and do engage in activities of varying responsibility level. However, I presume that if 

policy makers support a collaborative group to which they give management responsibilities, 

license to engage in lower-intensity efforts as well is implicit. Thus, each group is coded 

according to the highest intensity level at which it operates.  

The nature of the data I use in this study are likely to raise two primary concerns, which I 

address here. First, questions may arise about the process of identification. My analysis finds that 

groups vary considerably in terms of their “presence” in grey literature (e.g., agency reports) and 

on the internet. Some group website contain an archival section from which I am able to access 

documents such as yearly reports and older documents, or a specific page which references staff 

or organizational members. For other groups, I am forced to use a more deductive approach. For 

instance, a group report might contain a reference to the group coordinator, or a group resolution 

might be co-signed at the bottom by group members. These data would then be used to code for 

the presence of a dedicated coordinator and to record membership of different stakeholder types. 

This heterogeneity increases the potential for Type II error in which I conclude that a group does 

not exist (or more likely) overlook a specific group characteristic simply because a given 

document or textual reference is not found or is not available. However, if: (a) Type II error is 

present; and (b) collaborative groups do improve environmental quality, then a failure to identify 

group presence or group characteristics will serve to shrink the estimated difference between the 
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null and alternative categories. Thus, the resultant estimates are likely a lower bound on the 

difference between categories.9 

Second, my data coding approach is similar to that of qualitative document analysis 

(QDA) (Altheide et al. 2008), often used in political science. Since QDA involves the qualitative 

coding of textual sources for meaning, precision and impartiality are primary methodological 

concerns (Guba and Lincoln 1985). Precision refers to the replicability of the analysis. In many 

forms of content analysis, precision is thus assessed using inter-coder testing. The intensive, 

voluminous nature of this data collection process prevents me (at this time) from using a multi-

coder approach. Perhaps the most significant challenge is that the task of coding in large part 

consists of searching for a relevant piece of data, rather than interpreting a set of observations 

that are common across all watersheds. Similarly, my single coder approach also raises the 

concern of impartiality or objectivity. Both objectivity and precision are constant concerns in 

research based upon interpretation. However, by carefully describing and presenting the process 

by which I draw conclusions, I attempt to provide an “audit trail” (Platt 2006) that allows the 

reader to vette my approach. Thus, APPENDIX I presents the coding protocol I apply to each 

textual resource. This provides an overview of the analytical process I apply to each data source. 

Likewise, I adhere to the recommendation of Guba and Lincoln (1994) to provide full access to 

data so that my findings can be replicated and verified. While the nature of the database makes 

inclusion within this manuscript unfeasible, I make available the data sources that I employ 

(including group websites, plans, reports, etc.) associated with each assessed watershed. These 

are available by email using the contact information above. Next, I present the results of my 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 Alternatively, this analysis could be viewed as an “easy case” for collaborative watershed management if groups 
that have a stronger documented presence are also those groups that have the most impact (not out of the question, 
given that such groups are likely more munificent and active on average). If this is the case, then a failure of this 
analysis to identify significant environmental impacts associated with collaborative management would not change 
if groups were wholly identified.  
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analysis. 

 
Results 
 

First, I present the results of the restricted model, in which no collaborative group 

variables are modeled except for whether or not a publically supported collaborative group is 

active in the watershed (Table 3).10 The models in Table 3 use no time-lag for an active group; 

thus, any watershed for which a group is formed at any point prior to the sample year is 

considered to have an “active group.” For instance, a one-unit increase in road density is 

predicted to increase the total phosphorus level by 19% (exp[0.170] = 1.19, since phosphorus 

level is log-transformed). This is a significant increase, but it is important to note that the median 

value for road density in the sample is 1.09, so a 1-unit increase is a very large increase that one 

would anticipate should have a large corresponding effect.  

Table 3: Baseline Covariates, Model With No Time-Lag For Active Group 
 Phosphorus 

Level11^ (-) 
Nitrogen 
Level^ (-) 

Turbidity 
Level^ (-) 

Benthic 
MMI (+) 

Riparian 
Cover^^ (+) 

Fish 
Cover^^ (+) 

Area12^ 0.119* 0.103** 0.139* 1.432* -0.016’ -0.010 

Elevation -0.309*** -0.146* -0.254** 1.166 -0.044** 0.019 
% Urban^ 0.044* 0.034* 0.001 -0.354 -0.006 0.000 
% Wetlands^ 0.051** 0.062*** 0.031 -0.378 -0.002 0.004 

% Forest^ -0.103*** -0.138*** -0.066’ 1.714*** 0.036*** 0.009’ 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10 The six dependent variables used to model the effect of collaborative management are largely incommensurate in 
terms of scale and magnitude. One commonly used approach is to standardize each variable so that effects can be 
compared (since effects are estimated in z-scores). However, model goodness-of-fit is a constant priority. An 
analysis of standardized residuals, Q-Q plots, and DFFITS values for various model transformations reveals that the 
optimal approach for nitrogen level, phosphorus level, and turbidity level is to log-transformed each variable (since 
each is negatively skewed), while for riparian cover and in-stream fish cover, the best fitting model is achieved by 
taking the square root of the dependent variable (benthic community health is best fit without transformation). 
Transforming these variables better approximates a normal distribution and improves model fit. While using 
different transformations is less than ideal, as it complicates the interpretation and comparison of estimated effects, 
my primary interest in this analysis is examining whether collaborative groups are associated with statistically 
significant environmental improvements. Thus, I prioritize model fit over interpretability. 
11 Note that the dependent variables are not uniform in directionality. For phosphorus level, nitrogen level, and 
turbidity, a decrease represents an environmental improvement, whereas for benthic community abundance, riparian 
cover, and fish cover, an increase represents an environmental improvement. In order to reduce confusion and 
preserve conceptual understanding of these variables, I elect to keep them ‘as-is’ and simply note which direction 
represents and environmental improvement with either a (-) or a (+) sign. 
12 In 100’s of square miles 
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Road Density^ 0.033 -0.018 0.035 0.081 -0.006 -0.012* 
Population Density^ -0.007 0.098*** 0.045 -1.393*** -0.002 -0.007 
Agricult. Disturb.^ 0.081*** 0.051*** 0.062** -0.535* -0.015*** -0.008** 

Non-Ag Disturb.^ 0.019 0.030* -0.016 -0.032 -0.003 0.008** 

^ variable log-transformed, ^^ dependent variable square rooted 
‘ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
 

Generally, the results of these baseline models are similar to what might be expected. 

Road density, for instance, is positively related to total nitrogen level, total phosphorus level, and 

stream turbidity, and negatively related to benthic condition (the relationship to fish cover and 

riparian cover is statistically insignificant). Agricultural disturbance is strongly positively related 

to increased levels of nitrogen, phosphorus, and suspended solids (turbidity), and strongly 

negatively related to the riparian cover, in-stream fish cover, and benthic condition. Colloquially, 

one might interpret increased levels of nitrogen, phosphorus, and suspended solids and 

decreased vegetation, fish habitat, and benthic abundance as  “bad for the environment”; thus, 

these results are commensurate with what one might expect from agricultural activity proximate 

to streams.  

As an example of how the group-level effects are estimated, Table 4 shows the intercept 

adjustments fitted for a single HUC4 (1708, the Lower Columbia River), and state (Montana) 

(since each model fits a random effect estimate for state, ecoregion, and HUC4, a full 

presentation of each estimate for each stream quality metric is prohibitive): 

Table 4: Examples of modeled HUC4 and state effects 
 HUC4: 

Lower 
Columbia 
River 

State: 
Montana 

Phosphorus Level^ (-) -0.664 -0.178 

Nitrogen Level^ (-) -0.013 0.665 

Turbidity Level^ (-) -0.621 -0.381 
Benthic MMI (+) -0.015 0.064 
Riparian Cover^^ (+) -0.032 -0.228 

Fish Cover^^ (+) 0.000 0.413 
^ variable log-transformed, ^^ dependent variable square rooted 
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These examples demonstrate that streams in Montana generally have less turbidity and 

phosphorus, and less riparian cover than the general sample population. Likewise, streams in the 

Lower Columbia River Basin have a lower level of chemical pollutants than the general sample 

population. Interestingly, the model for in-stream fish cover failed to find any substantive 

difference amongst HUC4s in terms of in-stream fish cover; thus, the intercept adjustment for 

each HUC4 is near zero. Each baseline model also allows the effect of an active group to vary by 

state; in other words, “Active Group” is modeled rather than simply fit as an unmodeled (i.e., 

fixed) effect. This provides an overview of how the impact of a collaborative watershed 

management group is predicted to vary by state (Table 5): 

 
Table 5: Modeled Effect of ‘Active Group’ on Sample of States 
 Phosphorus 

Level^ (-) 
Nitrogen 
Level^ (-) 

Turbidity 
Level^ (-) 

Benthic MMI 
(+) 

Riparian 
Cover^^ (+) 

Fish Cover^^ 
(+) 

AL -0.37 0.02 -0.45 -0.13 -0.18 0.06 
CA 0.61 -0.15 0.53 0.17 -0.35 -0.07 
CO 0.03 -0.03 0.26 0.19 0.29 0.04 
KS -0.14 0.05 -0.51 -0.03 -0.23 -0.02 
KY -0.01 0.07 0.12 0.04 -0.19 0.15 
MN 0.25 0.04 0.60 -0.06 0.33 -0.03 
PA -0.25 0.10 0.56 -0.14 -0.22 -0.20 
UT 0.74 -0.01 0.30 -0.40 -0.29 -0.39 
WI -0.27 0.02 -0.24 0.13 -0.36 0.25 
^ variable log-transformed, ^^ dependent variable square rooted 
 

Table 5, which provides a sample of the modeled effect of ‘Active Group’ by state on 

each stream quality metric, has a relatively simple interpretation: a stream with an active group 

in Utah, for instance, is predicted to have an increased level of phosphorus and turbidity, a 

decreased level of riparian cover, and an increased level of fish cover and benthic community 

abundance. The primary utility of modeling this effect as differentiated by state is not to facilitate 

comparison of the efficacy of various state programs (since watershed groups just as much 
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within states as they do between states), but rather to control for the fact that groups might be 

created and supported for different reasons in different states. In particular, some states might be 

more likely to form groups to restore poor quality streams, whereas others might form groups to 

protect currently threatened streams. Thus, allowing the total effect of an active group to vary by 

state adjust for the context in which groups operate.  

Next, I proceed to test for the effect of an active collaborative watershed group. Table 6 

shows the estimated effect of an active collaborative watershed group by several different 

models. Each model has the same specifications and contains the same covariates as those 

described above, but each model employs a different time lag for determining the threshold at 

which a group is modeled as being “active.”  

 
Table 6: Model With Baseline Covariates, No Time-Lag For Active Group 
Active Group Phosphoru

s Level^ (-) 
Nitrogen 
Level^ (-) 

Turbidity 
Level^ (-) 

Benthic 
MMI (+) 

Riparian 
Cover^^ 
(+) 

Fish 
Cover^^ 
(+) 

0 Year Lag -0.227 -0.256* -0.266’ -2.531 0.005 0.045* 

5 Year Lag -0.274’ -0.275** -0.405* -1.022 0.007 0.052’ 
10 Year Lag -0.276 -0.154 -0.129 -1.412 0.027 0.064’ 

Total Duration -0.026’ -0.019* -0.032* -0.085 0.002 0.006** 
^ variable log-transformed, ^^ dependent variable square rooted  
‘ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 

 
The results of Table 6 speak generally to a strong relationship between the presence of a 

collaborative watershed group and reduced nitrogen and phosphorus levels, as well as increased 

in-stream fish cover. For instance, groups that have been active at least five years are predicted to 

reduce total phosphorus in a stream by 24% (exp[-0.274] = 0.76) and turbidity by 34% (exp[-

0.405] = 0.67). The results for fish cover are positive and statistically significant across almost 

all models, while the results for nitrogen content, phosphorus content, and turbidity are 

significant except across only groups that have been active for at least 10 years. The effect on 

riparian cover is consistent and positive, indicating that groups are associated with improved 
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riparian condition, but in no case is the parameter statistically significant. The estimates for the 

model using duration of group presence is quite different in magnitude because the marginal 

effect for these terms is per an additional year of group presence, rather than whether a group is 

present at all. For instance, the multilevel model predicts that each additional year a collaborative 

group is active in a watershed reduces stream turbidity by 3% (exp[-0.032] = 0.97) and decreases 

nitrogen level by 2% (exp[-0.019] = 1.02). Finally, it is interesting to note that the effects 

generally become larger in magnitude as the threshold for an active group is increased 

(particularly from zero years to five years); this indicates that groups do take time to have an 

impact. While the estimates jump around some as the threshold is increased, this is likely do to 

the fact that increasing the threshold reduces the population of groups analyzed, thus producing a 

more highly variable estimate simply due to reduced sample size. The most notable change is 

with respect to benthic condition. In the discussion section below, I elaborate on why the four 

metrics for which significant effects are found might be more strongly associated with 

collaborative group presence than riparian cover and benthic abundance.  

Building off of these baseline models, I next proceed to test how various characteristics 

of collaborative watershed management affect the predicted effect of collaborative group 

presence. It is important to emphasize that what I am modeling then is how these different 

variables of interest, such as the presence of a dedicated coordinator or the level of management 

responsibility accorded to a group, alter the predicted impact of an active collaborative watershed 

management group. The estimates associated with the basic, binary ‘Active Group’ parameter in 

Table 4 represent a conditional mean estimate for the presence of a group; what I am interested 

in, however, are how specific group characteristics make a group more or less successful at 

improving various aspects of stream condition. These effects can be measured by using a series 
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of interaction terms that model the variance associated with the ‘Active Group’ parameter as a 

function of the management characteristics of interest.   

 
H1: Inclusiveness and diverse representation in collaborative watershed management results in 
better water quality outcomes. 

  
Table 7 shows the estimated effect of incorporating other jurisdictions in watershed 

management group, again fitted using several different specifications of an “active group.” The 

variable ‘TRANS-BOUNDARY GROUP’ refers to whether or not an active watershed group has 

representation from the jurisdiction opposite of the sample site (for instance, the British 

Columbia Ministry of the Environment). While a lack of congruity between administrative and 

environment boundaries is often held up as a driver of environmental mismanagement (e.g., 

Karkkainen 2002), Table 7 fails to speak to any environmental improvement associated with 

involving other states or provinces in a collaborative watershed management group. No effect, 

from any model specification, is found to be statistically significant; further, the direction and 

magnitudes of these estimates do not appear to evidence even a statistically insignificant positive 

environmental effect. If transboundary representation does improve water quality, one would 

expect that the coefficient to be negative for phosphorus level, nitrogen level, and turbidity, and 

positive for benthic condition, riparian cover, and fish cover; instead, these coefficients vary in 

direction. 

Table 7: H1, Trans-boundary Groups 
Trans-Boundary * 
Active Group 

Phosph. 
Level^ (-) 

Nitrogen 
Level^ (-) 

Turbidity 
Level^ (-) 

Benthic 
MMI (+) 

Riparian 
Cover+ (+) 

Fish 
Cover+ (+) 

0 Year Lag -0.086 0.207 0.267 3.143 -0.003 0.009 

5 Year Lag -0.074 0.182 0.237 7.775’ 0.008 0.023 
10 Year Lag 0.296 0.306 0.396 6.419 -0.103 0.007 

Total Duration -0.017 0.013 0.022 0.443 -0.001 0.002 
^ variable log-transformed,+ dependent variable square rooted  
‘ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
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Testing another aspect of inclusion and representation, Table 8 demonstrates the 

predicted change in environmental impact associated with the presence of a collaborative group 

when the collaborative group has a distinct technical advisory body as an accessory. Presumably, 

such groups expand the breadth of perspectives and knowledge a group can leverage, which in 

turn increases effectiveness. The binary indicator ‘TECHNICAL BODY’ reflects whether a 

given group has some form of technical advisory committee associated with it that is intended to 

provide expertise and input. Table 8 does not reveal a statistically significant relationship 

between the presence of a technical advisory body and group effectiveness; further, the direction 

of the estimated effects do not portend of a positive effect either. In fact, the consistent 

directionality for several metrics indicates that groups with a technical advisory body might be 

less effective; Table 8 predicts increases in phosphorus and turbidity levels, and decreases in 

benthic condition, riparian cover, and fish cover, for all model specifications. I return to these 

findings below, but briefly, it is possible that the presence of a technical advisory group 

evidences a group that is more deliberative than operational, and thus has less “on-the-ground’ 

impact.  

 
Table 8, H1, Technical Advisory Body 
Technical Advisory 
Group * Active Group 

Phosph. 
Level^ (-) 

Nitrogen 
Level^ (-) 

Turbidity 
Level^ (-) 

Benthic 
MMI (+) 

Riparian 
Cover+ (+) 

Fish 
Cover+ (+) 

0 Year Lag 0.423’ 0.064 0.291 -4.632 -0.024 -0.019 

5 Year Lag 0.204 -0.024 0.100 -4.315 -0.022 -0.035 
10 Year Lag 0.569 -0.219 0.596 3.806 -0.071 -0.052 

Total Duration 0.015 -0.022 0.008 -0.433 -0.004 -0.004 
^ variable log-transformed, ^^ dependent variable square rooted  
‘ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 

 
The final aspect of Hypothesis 1 that I test is the level of group inclusiveness amongst 

local stakeholders (Table 9). The variable ‘TOTAL TYPES’ represents the sum of indicators for 

the inclusion of several different stakeholder types in the collaborative group (with local 
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government actors and citizens representing the baseline for group membership). These 

stakeholder types were developed inductively through extensive review of group membership 

rosters. For each group, the TOTAL TYPES variable represents the sum total of binary 

indicators for the participation of tribes, business interests, Federal and state government 

agencies, agricultural interests, environmental NGOs (e.g., The Nature Conservancy), and 

universities or colleges in the collaborative group.  

 
Table 9: H1, Stakeholder Types 
Total Stakeholder 
Types 

Phosph. 
Level^ (-) 

Nitrogen 
Level^ (-) 

Turbidity 
Level^ (-) 

Benthic 
MMI (+) 

Riparian 
Cover+ (+) 

Fish 
Cover+ (+) 

0 Year Lag -0.079 0.039 0.009 0.429 0.003 -0.004 

5 Year Lag -0.067 0.071 0.011 0.030 -0.005 -0.007 
10 Year Lag -0.095 0.077 -0.086 0.797 0.004 -0.010 

Total Duration -0.005 0.007’ 0.002 0.017 0.000 -0.001 
^ variable log-transformed, ^^ dependent variable square rooted  
‘ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table 9 also fails to evidence consistent, statistically significant evidence of increased 

group efficacy associated with increasing the diversity of stakeholders included in a group. In 

particular, the effects for phosphorus content and nitrogen content are in opposing directions, as 

are benthic community health and fish cover. While several estimates for nitrogen level are 

significant, these effects are positive (i.e., predict an increased level of nitrogen), which most 

definitely prevents me from rejecting the null hypothesis. I discuss the implications of these 

findings in more detail below.  

H2: An increased level of collaborative watershed management group responsibility (whether 
group operates as an information sharing forum, a planning group, or a policy implementation 
body) results in better water quality outcomes. 

 
The results in Table 10 indicate that groups tasked with planning and similarly intensive 

activities achieve greater environmental gains than do groups tasked only with coordination and 

less intensive work; further, groups tasked with management responsibilities (Table 11) such as 
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implementation and enforcement appear to perform even better. However, none of these 

relationships are shown to be statistically significant.  

Table 10: H2, Planning Responsibility 
Planning * Group Phosph. 

Level^ (-) 
Nitrogen 
Level^ (-) 

Turbidity 
Level^ (-) 

Benthic 
MMI (+) 

Riparian 
Cover+ (+) 

Fish 
Cover+ (+) 

0 Year Lag -0.094 -0.193 -0.050 0.980 0.051 0.008 

5 Year Lag 0.090 -0.101 0.233 -1.448 0.062 -0.001 
10 Year Lag 0.470 0.206 0.416 1.934 0.117 -0.007 

Total Duration 0.036 0.001 0.035 -0.034 0.004 0.000 
^ variable log-transformed, ^^ dependent variable square rooted  
‘ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
 
Table 11: H2, Management Responsibility 
Management * 
Group 

Phosph. 
Level^ (-) 

Nitrogen 
Level^ (-) 

Turbidity 
Level^ (-) 

Benthic 
MMI (+) 

Riparian 
Cover+ (+) 

Fish 
Cover+ (+) 

0 Year Lag -0.619* -0.280 -0.406 7.199 0.107’ 0.069 

5 Year Lag -0.507 -0.222 -0.284 8.916’ 0.128’ 0.046 
10 Year Lag -0.518 -0.209 -0.109 15.006* 0.124 0.091 

Total Duration 0.004 0.000 0.011 0.379 0.007 0.002 
^ variable log-transformed, ^^ dependent variable square rooted  
‘ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
 

The results for groups given management responsibilities are very consistent and strong 

in magnitude though, so while I am unable to reject the null hypothesis, it does appear that 

groups accorded greater responsibility achieve greater environmental gains. For instance, groups 

given management responsibility are estimated to decrease chemical content and turbidity 

relative to groups tasked with coordination or even planning, although these coefficients are not 

significant with the exception of phosphorus level for all active group (i.e., a zero year lag). 

Groups with management responsibility are also estimated to be much more effective at 

improving benthic community condition. A group that has management responsibilities and has 

been active at least five years is predicted to score 8.92 points higher on the benthic multi-metric 

index; groups active at least 10 years have almost twice as large an effect (15.01). The results 

associated with groups given planning responsibilities are insignificant and do not demonstrate 
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any consistent patterns, indicating that the most marked difference is between groups given 

management responsibilities and those that are not.  

 
H3: Increased formalization of a collaborative watershed group results in better water quality 
outcomes.  

 
Similarly inconsistent results are found pertaining to hypothesis three (H3). Table 12 tests 

the predicted difference between groups that have a dedicated coordinator and those that do not. 

Across the six models and four specifications of an active group, only one coefficient is 

statistically significant (increased riparian cover for groups active at least 10 years). One notable 

finding however is that the predicted effects generally become stronger as the threshold for an 

active group is increased. This makes a good deal of sense, since the differences that might 

emerge between groups with and without a dedicated coordinator likely manifest over time and 

are less apparent on an immediate basis.  

Table 12: H3, Dedicated Coordinator 
Coordinator * 
Group 

Phosph. 
Level^ (-) 

Nitrogen 
Level^ (-) 

Turbidity 
Level^ (-) 

Benthic 
MMI (+) 

Riparian 
Cover+ (+) 

Fish 
Cover+ (+) 

0 Year Lag -0.063 0.089 -0.014 0.280 0.023 0.007 

5 Year Lag -0.272 0.099 -0.156 1.009 0.074 -0.011 
10 Year Lag -0.050 0.213 -0.016 4.106 0.171* 0.028 

Total Duration -0.001 0.012 0.005 0.211 0.008’ 0.001 
^ variable log-transformed, ^^ dependent variable square rooted  
‘ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 

 
Groups that are more institutionally formalized in terms of codification of group 

procedures, membership requirements, and other constitutional details in a bylaw document, are 

not shown to be statistically significantly different than groups that are not (Table 13). While 

more formalized groups are predicted to decrease phosphorus and turbidity levels and increase 

fish and (significantly) riparian cover, these same groups are also associated with lessened 

effectiveness in terms of nitrogen level reduction and improving the health of benthic 

communities.  
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Table 13: H3, Group Bylaws 
Bylaws * Group Phosph. 

Level^ (-) 
Nitrogen 
Level^ (-) 

Turbidity 
Level^ (-) 

Benthic 
MMI (+) 

Riparian 
Cover+ (+) 

Fish 
Cover+ (+) 

0 Year Lag -0.248 0.182 -0.165 -1.957 0.066’ 0.009 

5 Year Lag -0.285 0.161 -0.401 -2.628 0.101* 0.018 
10 Year Lag -0.654 0.216 -0.097 -0.876 0.145* 0.104’ 

Total Duration -0.017 0.016 -0.017 -0.028 0.010* 0.004 
^ variable log-transformed, ^^ dependent variable square rooted  
‘ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 

 
Further goal and objective formalization (Tables 14 and 15) do not show significant 

support for hypothesis three either. In fact, groups with more formalized goal sets are predicted 

to be less effective at improving riparian condition and phosphorus levels (with the negative 

effects on riparian being generally significant). The results for other metrics, including fish 

cover, benthic community health, and nitrogen level, are inconsistent and do not speak to a 

common theme.  

Table 14: H3, Itemized Goals 
Itemized Goals * 
Group 

Phosph. 
Level^ (-) 

Nitrogen 
Level^ (-) 

Turbidity 
Level^ (-) 

Benthic 
MMI (+) 

Riparian 
Cover+ (+) 

Fish 
Cover+ (+) 

0 Year Lag 0.105 0.124 -0.135 0.693 -0.055 -0.012 

5 Year Lag 0.161 0.110 -0.278 4.466 -0.080’ -0.004 
10 Year Lag 0.002 -0.216 -0.234 -4.467 -0.130* 0.061 

Total Duration 0.009 -0.003 -0.018 -0.051 -0.008* 0.002 
^ variable log-transformed, ^^ dependent variable square rooted  
‘ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
 
Table 15: H3, Measurable Objectives 
Measurable 
Objectives * Group 

Phosph. 
Level^ (-) 

Nitrogen 
Level^ (-) 

Turbidity 
Level^ (-) 

Benthic 
MMI (+) 

Riparian 
Cover+ (+) 

Fish 
Cover+ (+) 

0 Year Lag -0.057 0.199 -0.163 1.932 0.058 -0.053 

5 Year Lag 0.180 0.279 -0.349 1.018 0.063 -0.070 
10 Year Lag 0.016 -0.150 -0.152 4.384 0.080 -0.001 

Total Duration 0.017 0.010 -0.020 -0.039 0.005 -0.004 
^ variable log-transformed, ^^ dependent variable square rooted  
‘ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 

 
The most interesting takeaway from Tables 14 and 15 is that generally speaking, 

establishing specific goals or even measurable objectives does not appear to make collaborative 

watershed groups more effective. I return to this issue more fully in the discussion section below. 
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H4: Collaborative watershed groups in which local participants provide a larger degree of 
funding result in better water quality outcomes.  

 
Contrary to hypothesis four, groups with higher levels of locally sourced funding appear 

to be less effective, not more effective (Table 16). Groups active for at least five years with at 

least 30% of total funds stemming from local sources increase the predicted effect of a group on 

stream nitrogen content by 37% (exp[0.317] = 1.37) for all active groups, and 58% (exp[0.455] = 

1.58) for groups active at least five years. While no parameter for phosphorus level is statistically 

significant, each term is also positive and similarly strong in magnitude; for instance, groups 

active at least five years with a large proportion of local funding are associated with a 32% 

increase in the effect of a group on total phosphorus level (exp[0.278] = 1.32). Though the 

findings are not significant, locally funded groups are also predicted to achieve less gains in 

benthic condition and riparian cover, and only somewhat larger gains in in-stream fish cover.  

Table 16, H4: Local Funding 
(active group x 
>30% Local) 

Phosph. 
Level^ (-) 

Nitrogen 
Level^ (-) 

Turbidity 
Level^ (-) 

Benthic 
MMI (+) 

Riparian 
Cover+ (+) 

Fish 
Cover+ 
(+) 

0 Year Lag 0.334 0.317’ 0.078 -4.667 -0.015 0.007 
5 Year Lag 0.278 0.455* -0.146 -1.720 -0.041 0.005 
10 Year Lag 0.061 0.072 -0.134 -3.460 -0.060 0.006 
Total Duration 0.023 0.024 -0.011 -0.259 -0.003 0.002 
^ variable log-transformed, ^^ dependent variable square rooted  
‘ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 

 
The relationship between group effectiveness and state funding, shown in Table 17, is 

inconsistent.  State funding is predicted to significantly decrease a group’s impact on nitrogen 

level (i.e., associated with higher levels of nitrogen), but (insignificantly) increase a group’s 

impact of phosphorus content. All other effects are insignificant as well, though state funding is 

associated with a general enhancement of a group’s impact on riparian cover and stream 

turbidity. 
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Table 17, H4: State Funding 
(active group x 
>30% State) 

Phosph. 
Level^ (-) 

Nitrogen 
Level^ (-) 

Turbidity 
Level^ (-) 

Benthic 
MMI (+) 

Riparian 
Cover+ (+) 

Fish 
Cover+ 
(+) 

0 Year Lag -0.168 0.386* -0.383 -1.839 0.006 -0.026 
5 Year Lag -0.276 0.571** -0.279 -1.516 0.024 0.005 
10 Year Lag -0.697’ 0.079 -0.436 0.117 0.051 -0.025 
Total Duration -0.026 0.034* -0.031 -0.054 0.003 0.000 
^ variable log-transformed, ^^ dependent variable square rooted  
‘ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 

 
Finally, the results of Federal funding (Table 18) are somewhat inconsistent as well, in 

that Federal funding is significantly associated with groups active at least being much less 

effective at reducing nitrogen level (77% less effective for groups active at least five years 

(exp[0.571) = 1.77)), but more effective at reducing phosphorus levels and stream turbidity 

(though the effect of Federal funding on group effectiveness is only significantly related to 

decreased phosphorus levels across groups active at least ten years). While phosphorus level and 

nitrogen level are not highly correlated (they have 0.32 correlation coefficient in the sample), it 

is nonetheless curious that Federal funding affects each differentially. One potential reason is an 

unmodeled interaction between modes of agriculture and Federal funding. Agricultural sources 

generally account for more than 70% of phosphorus and nitrogen delivered into streams 

(Alexander et al. 2008), but nitrogen primarily comes from corn and soybean cultivation whereas 

phosphorus stems more equally from manure, urban runoff, corn and soybean cultivation and 

other crops (Alexander et al. [2008] find in the Mississippi River that the percentage breakdown 

is 37% 12%, 23%, and 18% respectively). Thus, the differential effects of Table 18 perhaps 

might stem from watershed in particular areas being more likely to be federally funded, or from 

federally funded programs being more focused on –or more able to achieve gains—on policies 

that affect sources of phosphorus and nitrogen differently.  
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Table 18, H4: Federal Funding 
(active group x 
>30% Federal) 

Phosph. 
Level^ (-) 

Nitrogen 
Level^ (-) 

Turbidity 
Level^ (-) 

Benthic 
MMI (+) 

Riparian 
Cover+ (+) 

Fish 
Cover+ 
(+) 

0 Year Lag -0.168 0.386* -0.383 -1.839 0.006 -0.026 
5 Year Lag -0.276 0.571** -0.279 -1.516 0.024 0.005 
10 Year Lag -0.697’ 0.079 -0.436 0.117 0.051 -0.025 
Total Duration -0.026 0.034’ -0.031 -0.054 0.003 0.000 
^ variable log-transformed, ^^ dependent variable square rooted  
‘ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 

 
Discussion 

 
The results of this analysis provide some limited support for the conventional wisdom 

that effective collaborative groups include more stakeholders, fully engage in public policy and 

management issues, and have a stronger institutional presence (e.g., have a dedicated 

coordinator). However, several other conventions lack any support whatsoever in the above 

models. Technical advisory groups do not appear to enhance group impact, for instance. 

Likewise, while a lack of congruence between administrative and ecological boundaries is often 

espoused as a primary reason for engaging in collaborative environmental policy efforts, the lack 

of difference between groups that reach across state and provincial boundaries indicates that the 

benefits of such comprehensiveness might be limited to a more local level. While watershed 

condition is product of environmental behavior throughout a basin, it appears that that increasing 

small-scale comprehensiveness by involving more local stakeholders is more efficacious than 

increasing large-scale interaction involving numerous higher-level administrative bodies.  

Another tension that emerges from these results is that while the presence of a 

collaborative group itself is strongly associated with water quality and watershed health (Table 

4), this effect does not appear to vary considerably across the policy characteristics tested herein. 

In terms of the statistical analyses above, the presence of a watershed group is a significant 

source of variance in environmental outcomes, but several of the group characteristics tested fail 
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to account for this variance. One potential reason is that the variables tested might not be the 

variables that drive group effectiveness. A notable omission, of course, are group funding levels. 

While one would presume that differential effectiveness associated with funding discrepancies is 

somewhat of a given, this relationship is worth testing to posit whether public agencies devoting 

funds to collaborative endeavors are getting any “bang” for their “buck.” Unfortunately, funding 

data are not readily available for all groups included in this sample; for a second phase of this 

project, however, I am conducting a follow-up survey with contacts from each group identified 

in the data collection process. My intention is to use a brief form to both: (1) produce data that is 

not ubiquitously available via public documents, such as funding and participation levels; and (2) 

provide support for current data so as to conduct multimodal analysis and avoid unimodal biases 

that might arise in the current analysis (for instance, if some groups have a much stronger web 

presence than empirical presence). Of course, resource munificence alone cannot be the sole 

driver of group effectiveness. For instance, the findings above fail to identify a significant benefit 

associated with facilitating a technical advisory group, evidencing that policy makers should 

think carefully about what collaborative group funds are spent on.  

These results also highlight the essential role of qualitative research in understanding the 

role and function of collaborative management. For instance, the extensive case studies 

conducted by Margerum (2011) speak to contextual variables and localized drivers of group 

efficacy that do not necessarily emerge in a larger-N cross-sectional analysis. In particular, while 

the representative sampling of the WSA/NRSA and grouping factors used in the multilevel 

model facilitate comparison between watersheds that “self-select” into the collaborative 

treatment group and those that do not, it is certainly possible that these same factors that 

motivate self selection result in environmental improvement without regard to the particulars.   
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Conclusion 

 
It is easy to lose sight of the fact that collaborative governance also requires state 

resource expenditure, time and effort that could be applied elsewhere. This analysis has probed 

the “black box” of collaborative policy making and examined how specific group characteristics 

and design choices enhance (or detract from) the environmental impact associated with 

collaborative watershed management. The goal of this work is to help shift the decision 

framework from a binary approach in which the question is simply whether or not to engage in a 

collaborative governance approach to a more nuanced discussion in which policy makers can 

design and implement collaborative governance strategies to be maximally effective. 

This analysis identifies a statistically significant difference between watersheds that are 

managed collaboratively and those that are not, but is unsuccessful in accounting for the source 

of that variation. This raises the possibility that collaborative watershed management might not 

have the effects it is often purported to have. If the organizational characteristics of a watershed 

group are unrelated to water quality improvements but the presence of a group is, then this 

indicates that collaborative watershed groups do not in and of themselves matter a great deal, as 

they are subject to self-selection. In other words, collaborative groups arise in context within 

which stakeholders are already motivated to improve and protect water quality, and the group is 

not a causal drive but instead an effect. This interpretation is not incompatible with the extant 

literature, which links successfully operating groups to the presence of social capital, trust, and 

norms of reciprocity amongst group members (e.g., Ansell and Gash 2008; Margerum 2011, 

Sabatier 2005). Stakeholders possessing considerable social capital and sharing a common 

interest in improving environmental conditions are presumably more likely to form and sustain a 

collaborative group and to foster environmental improvement; the favorable context drives each 
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occurrence. This indicates that policy makers about whether collaborative groups are an efficient 

vehicle for environmental restoration and protection, or whether stakeholder interests and 

abilities (should they exist) are more efficiently channeled through other policy tools such as 

public-private partnerships or grants. Perhaps the central takeaway is that we as policy scholars 

and practitioners need to think more deeply about why we believe that collaborative groups are 

an effective vehicle for service delivery and how such delivery can be improved.  

 Going forward, there are two primary future directions for this research: (1) a survey 

conducted with group liaisons to develop a multimodal dataset and to produce contextual data 

and data that are not currently public (e.g., group expenditures); and (2) a continuation and 

expansion of the longitudinal analysis. The EPA is conducting a second NRSA over the course 

of 2013 and 2014, which will produce a third observation for the 357 watersheds sampled under 

both the WSA and first NRSA, and a two-period sample for larger rivers sampled under both the 

first and second NRSA. This will expand the breadth and depth of available data, which should 

provide more consistent model results and improve my ability to parse secular changes from 

effects attributable to the use of collaborative management. The spread of collaborative 

approaches in empirical practice has grown over the last few years, meaning that the “treatment” 

population will expand as the second NRSA data become available since more watersheds are 

managed collaboratively (and because groups will have been active longer in each watershed as 

well). The survey data will serve to better triangulate group characteristics, while the second 

NRSA will improve the statistical power of the analysis. Given current data, however, it appears 

unlikely that collaborative management has the environmental benefits it is generally purported 

to have.     
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APPENDIX I: Example of Protocol Used to Code Watershed Groups 
 
Note: I apply this process iteratively across available documents. Since many groups have 
distinct documents reference bylaws, membership, and funding, for instance, a group might 
initially receive a “0” for each category of stakeholder representation when coding the bylaws 
document; these variables will then be recoded when analyzing the membership roster.  
 
Q1: Is this textual source an: (1) official group website; (2) annual group report; (3) group bylaw 
or charter document; (4) piece of authorizing legislation 
 
If no à disregard 
If yes à proceed to Question 2 
 
Q2: Does the textual source contain language that addresses a group’s purpose? 
 
If no à proceed to Question 5 
If yes à proceed to Question 3 
 
Q3: Does the text speaking to a group’s purpose present an itemized set of purposes? 
 
If no à code Objective Formalization as  “MISSION STATEMENT” 
If yes à proceed to Question 4 
 
Q4: Does the itemized set of purposes contain specific, measurable points of reference (e.g., 
“reduce total nitrogen level” instead of “improve water quality”) 
 
If no à code Objective Formalization as “GOALS” 
If yes à code Objective Formalization as “MISSION STATEMENT” 
 
Q5: Does the textual source contain language describing or listing group membership? 
 
If no à proceed to Question 14 
If yes à proceed to Question 6 
 
Q6-Q13: Does text describing group membership list a tribe (or business, Federal agency, etc.) 
as a member of the group? 
 
If no à code Tribal Representation as 0, proceed to next question 
If yes à code “Tribal Representation” as 1, proceed to next question 

---for Q6-12, proceed to next stakeholder type; for Q13, proceed to Q14 --- 
 

Q14: Does the textual source detail group funding or budget data? 
 
If no à proceed to next question 18 
If yes à proceed to question 15 
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Q15-Q17: Do local/state/Federal funds constitute at least 30% of total group budget? 
 
If no à code Local/State/Federal Funding as 0, proceed to next question  
If yes à code Local/State/Federal Funding as 1, proceed to next question 
 
Q18: Does textual source contain language describing membership requirements, voting 
procedures, and other constitutional details? 
 
If no à code Bylaws as 0, proceed to Q19 
If yes à code Bylaws as 1, proceed to Q19 
 
Q19: Does textual source reference and describe a technical advisory body associated with the 
group? 
 
If no à code Technical Body as 0, proceed to Q20 
If yes à code Technical Body as 1, proceed to Q20 
 
Q20: Does textual source contain specific reference to a group coordinator or facilitator? 
 
If no à code COORDINATOR as 0, proceed to Q21 
If yes à code COORDINATOR as 1, proceed to Q21 
 
Q21: Does textual source identify year in which group was formed? 
 
If no à proceed to Q22 
If yes à code FORMATION YEAR as specified year 
 
Q22-Q28: Does textual source contain language reference to group actions or responsibilities 
related to EDUCATION (e.g., group “runs environmental education programs in local schools”)?  
 
If no à proceed to next question 
If yes à code GROUP ACTIVITY as “education” 
 
Q23: Outreach (e.g., group “reaches out to local farmers”) 
Q24: Coordination (e.g., group “provides forum where agencies can share information”) 
Q25: Monitoring (e.g., group “conducts ongoing monitoring of stream pollutants”) 
Q26: Projects (e.g., group is “conducting restoration on Smith Creek near Auburn”)  
Q27: Planning (e.g., group is “charged with developing comprehensive action plan”) 
Q28: Management (e.g., group is “lead local entity for water improvement program”) 
 
 
 


