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Abstract

This study is motivated by the importance of agriculture to growing and populous

economies, and the potential vulnerability of agricultural output to climate changes.

We examine the impact of historic climate change trends on India’s agriculture us-

ing a panel of all states and union territories within India, and estimate the effect of

temperature and precipitation trends between 1961–2010 on the yield of five major

crops – cotton, sorghum, rice, sugarcane and wheat. We are unable to conclude that

temperature and precipitation trends have had a clear impact on crop yields over the

period we study, under any of our econometric specifications. Our results highlight

the heterogeneity in impact across space, time and across crops, and emphasizes the

importance of error measurement when predicting future outcomes. They also suggest

that adaptation could play a role in mitigating adverse climate change effects.

Keywords: climate change, agriculture, productivity, panel estimation, India
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1 Introduction

Much attention has been given to the effects of climate change on agricultural output, because

of the relevance of agriculture to the world economy, and the sensitivity of crop yields to

climate conditions. Historically, much of the work on climate change impacts has focused

on US outcomes, but recent work has increasingly studied developing countries, following

predictions that the greatest short-term consequences of climate change may exist in the

developing world (Rosenzweig and Parry, 1994; Stern, 2006).

A small but growing literature studies impacts in India, where the agricultural sector is a

critical component of the economy. In 2011, agriculture accounted for 18.1% of India’s GDP,

and 52% of employment, compared to 1.2% and less than 0.7% in the US, respectively.1

Climate change impacts on India can have far-reaching consequences, as well: India is the

world’s second largest producer of of agricultural outputs2, and any changes in production

due to climate change could materially impact global agricultural imports and exports.

Recent studies on climate change impacts in India project future outcomes under a variety

of scenarios (Aggarwal and Sinha, 1993; Lal et al., 1998; Saseendran et al., 2000; Kumar and

Parikh, 2001; Aggarwal and Mall, 2002; Guiteras, 2009) These studies typically estimate

yield sensitivity coefficients from existing data, and then use climate change predictions from

external climate change models to project yield changes. One drawback of this approach

is that these studies are generally unable to provide accurate standard errors of their final

predictions, since their results depend on the accuracies of specific scenarios that make

assumptions about future policies and behaviors. Another drawback is that most of these

studies make few allowances for farmer adaptations to climate change, with the exceptions of

Guiteras (2009) and Kumar and Parikh (2001), who consider some adaptation possibilites.

When considering adaptation, studies in the global literature broadly fall into four cat-

egories. Crop modeling studies typically study the reactions of plants to varying climate

conditions in controlled environments.3 The advantage of these studies is their ability to

1CIA World Factbook (2012)
2FAO Statistical Yearbook (2012)
3See Iglesias et al. (1996) for a review of crop modeling studies in Asia.
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experimentally assess how plants respond to climate adjustments in the absence of other

confounding factors. However, farmer adaptations to climate change are difficult to consider

in these settings. While some studies, such as Matthews et al. (1995), attempt to test spe-

cific adaptive responses such as planting time adjustments, these may differ from the actual

range of responses that take place.

Other studies use time-series data in a single region to examine how climate changes have

affected yields in practice. While these studies accommodate any responses that farmers can

make on a year-to-year basis, they are unable to account for longer-term adaptations that

farmers may make, particularly if changes in technology over time occur simultaneously.

Cross-sectional studies mitigate these concerns by studying the effects of climate change

over geographically and climatically diverse regions. Because those who farm in statically

different environments will have adapted their technologies and crop choices to suit their

region, these studies account for some long-term adjustments to climate changes. Mendelsohn

et al. (1994) is an influential example in this category. Kumar and Parikh (2001) apply this

approach to India. Nonetheless, such studies may fail to take into account other regional

differences that are correlated with climate differences and affect yields, leading to bias in

their estimates.

Recently, panel data studies have emerged that attempt to correct the limitations of

both cross-sectional and time-series studies, by accounting for fixed regional effects, and

estimating the effects of climate change variable changes non-linearly over a diversity of

regions and climates.

This study aims to contribute to this last category of the literature by assessing how

climate changes have affected the yields of major crops in India, over a 50-year time period

from 1961-2010. We relax several modeling assumptions of the existing literature that re-

strict the ways in which farmers can adapt to changes, and exploit the considerable climatic

diversity across regions of India to determine how yields respond not only to short-term

weather fluctuations, but to long-term temperature and precipitation level differences. We

find that there has been no clear impact of climate change on the yields of crops we study,
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over the 50-year period.

Our paper is most closely related to two recent papers, Lobell et al. (2011) and Guiteras

(2009). Lobell et al. (2011) examines a 20-year country-level panel to estimate historical

global impacts of temperature and precipitation trends on crop yields, and find that changes

have reduced yields for some crops. However, using country-level data may overlook climatic

differences within each country, and could overstate yield losses if farmers in regions more

prone to harmful climate changes for affected crops are less likely to grow those crops, or

employ differential production processes. Guiteras (2009) studies temperature and precipi-

tation effects in India, and uses a 40-year district-level panel to estimate the sensitivity of

yields to climate changes. The study then predicts climate change effects beyond 2010 under

a variety of climate change scenarios generated by external models. However, these results

are averaged over the crops studied, and evidence suggests that crops differ in their sensi-

tivities to climate changes. Schlenker and Roberts (2008) show, for example, that the point

beyond which temperatures become harmful to yields differs amongst crops. Thus, if farmers

make crop choices partly in response to their suitability to regional climate conditions, these

results may overestimate yield reductions.

By considering region-specific panel data on climate variables and crop outcomes, and

estimating effects separately across crops, we hope to overcome some of the limitations

of previous work. In addition, we consider crop-specific technology trends, temperature-

precipitation interaction terms, seasonal yield variations, and season- and region-specific

climate trends, to avoid any potential bias from averaging across these dimensions.

Lastly, our study differs from Guiteras (2009) and other studies of climate change impacts

on crop yields in India in that we estimate historical impacts, and not future predictions.

Because we calculate climate trend estimates and yield sensitivity estimates within a dataset

of realized observations for the same regions and years, we are able to determine the precision

with which our impacts are estimated.
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2 Data and methodology

2.1 Data

Our study makes use of state-level data on seasonal crop yields for 5 major Indian crops -

rice, wheat, sorghum, cotton, and sugarcane - during the period from 1961 to 2010, obtained

from the IndiaStat database.4 For the same period, we use state-level monthly temperature

and precipitation data for 32 regions of India, obtained from the University of Delaware

Terrestrial Air Temperature and Precipitation dataset.5

Crops are grown in three seasons in India. The Kharif growing season takes place from

June to October, and encompasses the bulk of aggregate production. The Rabi growing

season is from November to May, and is important for crops such as wheat. The Annual

growing season encompasses the entire year, and is associated with crops that have year-long

production cycles, such as sugarcane. In this study, we average climate data over the months

corresponding to each of the three yearly growing seasons in India, so that each crop yield

is matched to the mean temperature and precipitation for its growing season.

Table 9 provides information about the states and seasons in which each of the crops

we study were grown in our sample. Of the crops studied, rice and sorghum are grown in

multiple seasons in some states, while cotton, wheat, and sugarcane are grown exclusively

in one season. While rice, a staple food throughout India, is grown in nearly every state,

there is considerable geographic variation amongst other crops. Table 10 reports the average

yields of each crop in each state, and reveals considerable heterogeneity in the yields of

different crops, and also in the yields of a single crop across regions. Differences in yields

across regions may point to varietal differences in crops not captured in our data, but may

also be linked to regionally disparate technologies for crop production, and varying climate

conditions.

Tables 11 and 12 show how climate conditions vary across regions and seasons. Again,

4Available at http://www.indiastat.com
5Available at http://climate.geog.udel.edu/~climate/
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there is considerable variation across regions: In mountainous northern regions such as

Sikkim, Jammu, and Kashmir, average Rabi (November - May) season temperatures are

near 0 degrees Celsius, while southern states such as Kerala and Tamil Nadu have averages

above 26 degrees during the same season. For these reasons, increases in temperature over

time may be beneficial in some regions, by limiting the number of days with extreme cold

weather, and harmful in others, by increasing the number of days with extreme hot weather.

Precipitation patterns are also diverse, across both seasons and regions. In the typically

wetter Kharif season, states such as Meghalaya bear an increased risk of flood damage to

crops as precipitation levels rise, while drier states like Rajasthan may benefit from increased

rainfall.

Climate conditions also influence the crops that are produced in various regions. Cotton

production is sensitive to frost, and is avoided in the colder regions of India’s north and

northeast; on the other hand, wheat is grown in much of the north, as it is relatively less

sensitive to cooler temperatures (Table 9).

These factors suggest a model of climate change and yield that accommodates heterogene-

ity across seasons, regions, and crop choices, when estimating effects. Section 2.2 proceeds

by discussing how our model addresses these needs.

2.2 Methodology

To estimate how climate trends have affected crop yields in India, we model the effects of

temperature and precipitation on yields across all regions of India for the 50-year period,

controlling for yield trends owing to technological improvements, and the fixed effects of

each region-season-crop combination (the yield model). We separately estimate how climate

conditions changed over time, and construct a de-trended set of climate data that preserves

the variance of the original data, but keeps climate conditions constant, on average, over

the period of our study (the climate change model). We then compare the yields that were

observed in the data with counterfactual yields that would have been observed in the absence

of climate trend by fitting the de-trended set of climate data to our yield model.
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In using a fixed effects estimation with a time trend to estimate climate change effects

on yield, our yield model broadly follows Deschênes and Greenstone (2007). The value of

this approach is that it exploits year-to-year fluctuations in climate conditions to estimate

climate effects on yield, while controlling for regional productivity differences and any long-

term trends. If year-to-year fluctuations are essentially random, then, our estimates of the

effects of temperature and precipitation on yields should be free of any omitted variable bias.

Our yield model allows substantially more flexibility in assessing the effects of climate

in yields than Deschênes and Greenstone (2007), by including separate temperature and

precipitation effects for each crop; allowing level yield differences for each region, crop, and

season combination; allowing crop-specific technology trends and interacting temperature

and precipitation effects (as a sensitivity test); This flexibility is afforded by the resolution

of our data and the length of time over which we calculate our effects, and allows climate

change effects to emerge in the data without restrictive assumptions or averaging across

heterogeneous crops, regions, and seasons.6

In fitting our yield model to de-trended climate data, we follow Lobell et al (2011).

Like the Lobell et al study, we allow climate variables to affect yields quadratically, so that

level differences in climate conditions can have different effects on yields. This allows us to

account both for the fact that temperature and precipitation effects may change direction,

and for long-term adaptations that farmers may make in response to climate trends, using

information about how farmers in various regions have adapted to level climate differences.

2.2.1 Farmer adaptations

Farmers may adapt to both short– and long–term changes in climate conditions, when choos-

ing crops and production technologies. In addition, exit and entry into farming may differ

under different climate conditions. Because the effects of climate variation on yield are

estimated in our yield model using the yields realized under varying year-to-year climate

conditions, we accommodate any within-year adjustments that farmers make in advance of

6Sections 2.2.2 and 2.2.3 discuss these features of the model in greater detail.
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a growing season based on anticipated temperature or rainfall, along with any adaptations

made during a growing season, as actual temperature and rainfall levels are observed.

To accommodate crop choices that are adapted to regional climate characteristics, our

model estimates a separate set of climate effects on each crop’s yields, and considers the

crops grown in each region and season separately. This poses advantages over models that

pool crops or regions when estimating the effects of climate change on yield, since these

models can overstate the impacts of harmful climate changes on crop yields, if farmers

choose hardier crops in regions with extreme temperatures. Because we observe crop choices

and temperatures at the state level, and apply our de-trended temperature set at the same

level, estimated yield impacts are derived only from the crops that are actually grown within

each region.

Additionally, because we use non-linear climate effects on yield and observe farmer re-

sponses in regions with diverse climates, wherein farmers have had time to adjust to changes

in level, our yield model captures how climate change effects may differ in climates with

different average temperature and precipitation levels. To this extent, our estimates of coun-

terfactual yield levels account for long-term farmer adaptations.

However, two potential issues exist in our consideration of long-term adaptations: First,

shifts in production across crops, and to alternate economic activities, are not captured in

our de-trended counterfactuals. In practice, there are several reasons why these adaptations

may occur very gradually in India. Difficulties in transferring land rights, along with the

dominance of the agricultural sector in rural regions, could effectively prevent responsive exits

from farming occupations in adverse conditions.7 Additionally, low rates of technological

investment and adoption are commonly observed in India and other developing countries,

and are often attributed to uncertainty in returns on investment due to short-term climate

variability, credit constraints, and limited access to information.8 Lastly, farmers may not be

able to detect the signal of climate change amidst the “noise”of climate variability.9 These

7Moorthy (2012)
8Giné et al (2010), Guiteras (2009), and Feder, Just, and Zilberman (1985) all discuss these issues.
9Kelly, Kolstad, and Mitchell (2005), and Reilly and Schimmelpfennig (2000)
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issues may be particularly relevant in our study, as Figures 1 and 2 indicate that long term

climate patterns in India have been complex, and year-to-year variations are large relative

to trends.

Empirical evidence also suggests that long-term adaptations are limited, even in devel-

oped countries. Schlenker and Roberts (2009) find that maize yield responses to extreme

weather do not differ between time-series and cross-sectional models, suggesting that long-

term adaptations are not different from year-to-year adaptations.10

A second potential issue in our model is that long-term yield responses may be mixed with

short-term responses in our model, to some degree. At a given temperature or precipitation

level, yield observations may arise from a spectrum of groups: at one end, farmers who are

accustomed to that level of temperature or precipitation, and whose growing practices have

adapted to it; and, at the other end, farmers who are experiencing very anomalous weather,

and are able only to make short-term adjustments to accommodate these conditions.

This issue is less likely to occur when deviations within regions are small relative to

differences between regional averages. In our sample, the standard deviation of temper-

atures within a region was never greater than 0.61 degrees Celsius, except in one case,11

and differences in average temperatures across regions were large (see Table 11). Similarly,

the standard deviation of precipitations was never greater than 38.38 mm, except in one

case,12 despite large differences between states. More formally, F tests of climate differences

across regions reveal an F-statistic of 1352.52 for temperature and 110.46 for precipitation,

indicating that variance between states was substantially greater than variance within states.

2.2.2 The yield model

Our yield model specifies how climate change variables affect crop yields, while controlling for

technological changes over time, and the fixed effects of crops and regions. The mathematical

representation is:

10A corollary to these arguments is that our use of static climate differences across regions may too greatly
account for long-term adaptations. We discuss this possibility further in our conclusions.

11Jammu and Kashmir had a standard deviation of 1.15 degrees.
12For precipitations, the exception is Meghalaya, with a standard deviation of 87.66 mm.
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Ycsr,t = αcsr + β1,c ∗ Y eart + β2,c ∗ Y ear2t + θc ∗ ClimateV arssr,t + εcsr,t (1)

where: r, s, c, t index region, season, crop, and year respectively.

Yield: Yi, the dependent variable in Equation 1, is the natural logarithm of output per

unit of area and is computed as:

Yi = Ln(
Productioni

Areai
) (2)

This assumes that a unit increase in temperature or precipitation causes a constant

percentage change in yield, and follows previous work in the field13 However, other papers

use unmodified yield as a dependent variable, assuming a linear relationship between climate

changes and yield.14 To account for both possibilities, we additionally test specifications

using actual yield as the dependent variable, and report coefficients and results from these

variants.

Fixed effects: For each crop in each season and each region , we allow the model to

estimate a separate base yield, αcsr. Separating base yields along these dimensions allow

our model to capture the substantial level differences in yields among crops, seasons and

regions (see Table 10) on yields that are not captured by our climate variables. Fixed effects

not only absorb variance to gain clearer estimates of the effects of climate on yield; they

also remove any bias in our climate coefficients resulting from correlations between regional

characteristics and climate variables.

Technology trend: Because technology improvements can affect crop yields, and tech-

nology trends may be correlated superficially with climate trends, the model controls for

crop–specific quadratic technology trends, whose effects are captured in β1,c and β2,c.

Climate effects on yield: θc is a vector of the main parameters of interest in the model,

which capture the effects of each climate variable in the vector ClimateV arsi on Yi.

In our primary specification, ClimateV arsi includes a quadratic specification for tem-

13See, for example, Lobell et al (2011), or Schlenker and Roberts (2008).
14Deschênes and Greenstone (2007) is an example.
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perature and precipitation:

ClimateV arsi = [Tempi, T emp
2
i , P recipi, P recip

2
i ] (3)

Correspondingly:

θc = [θc,1, θc,2, θc,3, θc,4, θc,5]
′ (4)

This specification assumes that temperature and precipitation affect Ln(Yi) quadratically,

so that increasing temperatures and precipitations can have positive effects at some levels,

and negative effects at others.

While models allowing level effects of climate variable increases to vary are common in

the literature, papers vary in their approaches to accommodating this variation. Ritchie

and NeSmith (1991) suggests that crops have cutoff temperatures, above which increases are

harmful, and a few papers explicitly model such cutoffs. However, evidence suggests that

cutoff temperatures may vary from crop to crop15, so that models adopting this approach

may be misspecified if they average results across several crops, or otherwise apply the wrong

cutoff to the wrong crop. Additionally, crop cutoff values may be correlated with regional

climate characteristics that affect yields: for example, farmers may choose to grow crops

that are more heat-tolerant in warmer regions. Thus, any misspecifications could lead to

bias when estimating the effects of climate changes on yield.

The quadratic specification we use has benefits in this respect, as the data for each crop

determine the temperatures and precipitations beyond which yield effects become harmful

or beneficial. Additionally, the quadratic specification allows a different marginal effect at

all levels, so that farmer adaptations across regions with different temperature levels can be

captured in the climate effects we estimate.

To accommodate the fact that crops may differ in their sensitivities to climate conditions,

the vector of climate effects, θc, specifies a unique set of parameters for each crop. This allows

temperature and precipitation changes to have a unique quadratic relationship with yield for

15Schlenker and Roberts (2008)
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each crop, and prevents bias in our yield impact results from correlations between regional

crop choices and regional climate conditions.

Sensitivity to Temperature-precipitation interactions: Temperature and precipitation may

not have independent effects on yield. For example, temperature increases may be detrimen-

tal to yields beyond a certain point in a dry season, but beneficial until a later point during

a wet season.16 As a sensitivity test, we allow precipitation levels to affect the relationship

between temperature and yield, and vice versa, and estimate the specification:

ClimateV arsi = [Tempi, T emp
2
i , P recipi, P recip

2
i , (5)

Tempi ∗ Precipi, T empi ∗ Precip2i , P recipi ∗ Temp2i ]

2.2.3 The climate trend model

The climate trend model estimates the trends in temperature and precipitation over the

50-year period separately for each region and season. Our general specification is:

 Tempi

Precipi

 = γrs + TimeV arsi ∗ ωrs + µi (6)

where: TimeV arsi is a vector of variables specifying the functional form of the trend; and,

γrs and ωrs are parameters that separately estimate the effects of time for each region and

season.

Season- and region-specific climate trends have three benefits: they allow for more precise

calculations of the effects of climate change on yield; they absorb geographic and within-year

variations to clarify climate change trends; and, they reduce any bias in our overall estimates

resulting from correlation between region-specific climate trends and region-specific yield

trends.

To determine the appropriate functional form for the effect of time on climate change,

16Runge (1968) discusses the relevance of these interactions for corn crops.
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we tested three specifications of TimeV arsi to estimate a linear, quadratic, and cubic fit for

a variant of Equation 6:

 Tempi

Precipi

 = γrs + TimeV arsi ∗ ω + µi (7)

Note that while fixed effects γrs are included in this specification, Equation 7 differs from

Equation 6 in estimating a single parameter for each climate variable, ω. This allowed us to

summarize the goodness of fit of each specification across all regions and seasons.

Our test results suggest that the quadratic form best fits the temperature data, while a

cubic form best fits the precipitation data. Tables 1 and 2 show the parameter estimates

under each functional form for temperature and precipitation trends, respectively.

Column (1) of Table 1 implies that temperatures increased by slightly less than 0.5 degrees

over the 50-year study period, after accounting for fixed regional and seasonal effects. Figure

1 shows a more nuanced trend, using the quadratic fit in Column (2) of Table 1: temperatures

decreased initially, from 1961 - 1975, and then increased from 1975 - 2010.

Although Column (1) of Table 2 suggests an overall decrease in precipitation over the

study period, the cubic fit in Column (3) shows a more complex pattern of initial increases,

followed by decreases, followed by increases. Figure 2 depicts a graph of the cubic trend,

and shows the underlying average monthly precipitation values for each year of data.

2.2.4 Estimating Climate Trend Impacts

To determine how climate trends have affected realized crop yields over the last 50 years

in India, we use parameters obtained from the climate trend model to de-trend the realized

observations of temperature and precipitation:

ˆTempdetr,i = ˆTemp1961,rs + (Tempi − ˆTempi) (8)

ˆPrecipdetr,i = ˆPrecip1961,rs + (Precipi − ˆPrecipi) (9)
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The resulting de-trended climate variables preserve the residual variation of the original

variables, but maintain constant average values across time that are equal to the predicted

values for 1961, ˆTemp1961,rs and ˆPrecip1961,rs. A separate pair of base values is calculated

for each region and season, so that each de-trended climate variable is sensitive to regional

and seasonal fixed effects.

Next, the yield model is estimated using realized observations of temperature and pre-

cipitation, and the de-trended climate data are fitted to the estimated yield model to obtain

predictions of what yields would have occurred in the absence of climate changes:

Ŷ detr
csr,t = α̂csr + β̂1,c ∗ Y eart + β̂2,c ∗ Y ear2t + θ̂c ∗ ClimateV arsdetrsr,t (10)

To separate the effects of temperature and precipitation, we estimate Ŷ detr
csr with three

separate specifications for ClimateV arsdetrsr : In the first specification, temperature variables

are replaced with their de-trended values from Equation 8, but precipitation values are the

values realized in the data. The resulting yield estimates reflect a counterfactual scenario in

which average temperatures did not change during the last 50 years, but any precipitation

trends still occurred. The difference between these yield estimates and the estimates from

non-detrended data can thus be attributed to temperature trends. In the second specifica-

tion, precipitation values are de-trended as per Equation 9, but temperature values come

from the data. Here, yield estimates describe a scenario in which only temperature trends

occurred, and differ from non-detrended estimates due to precipitation trends over the last

50 years. In the third specification, de-trended values are used for both temperature and

precipitation, so that resulting yield estimates reflect a scenario in which neither temperature

nor precipitation averages changed over the last 50 years.

To compare realized yields with estimated yields from each of these three counterfac-

tuals, we compute the percentage difference between each non-detrended estimate and its

counterfactual value in a given year, t, for crop c, state, r, and season, s, as follows.

%∆̂Ycsr,t =
Ŷcsr,t − Ŷ detr

csr,t

Ŷcsr,t
(11)
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The average annual impact on yield across all years, [1, T ], is then computed as,

%∆̂Ycsr =
T∑
t=1

̂%∆Ycsr,t
T

(12)

The average annual impact on yield of a given crop, c, in a given season, s, averaged

across all the states is computed as,

%∆̂Ycs =
R∑

r=1

%∆̂Ycsr
R

(13)

3 Results

We begin by discussing climate trend results from the climate model. Next, we report the

estimated effects of climate variables on yield from the yield model. Lastly, we report the

estimated impacts of climate trends on historical yields, by comparing predicted yields from

the yield model with counterfactual yields imputed using de-trended climate data.

3.1 Climate model results

The climate model estimates temperature and precipitation trends for each of the 32 states

and 3 seasons in our sample for which we have data. As Tables 1 and 2 show, when a

single trend is estimated across the entire sample, trends are significant for the quadratic

temperature trend and cubic precipitation trends that we use in our primary specification.17

When quadratic temperature trends were separated by state and season, the coefficients

for many state-season combinations were insignificant. Of the 25 state-seasons with statis-

tically significant temperature coefficients, all showed similar convex trends to the pooled

quadratic trend in Column (2) of Table 1, with temperatures initially declining over the

period, and then rising.

17Because of the large number of coefficients estimated, we do not display results for individual state-season
climate trends in this paper. These results can be obtained from the authors upon request.
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Table 1: Temperature Trend Specifications

(1) (2) (3)

Year .00941∗∗∗ -.0134∗∗∗ -.0171∗∗∗

(.000373) (.00152) (.00391)

Year2 .000473∗∗∗ .000659∗∗∗

(.0000304) (.000188)

Year3 -2.58e-06
(2.57e-06)

R2 0.995 0.996 0.996
N 8,698 8,698 8,698

Standard errors in parentheses

Temperatures are seasonal averages in degrees Celsius.

Fixed effects for each region-season combination

are included, but not displayed.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2: Precipitation Trend Specifications

(1) (2) (3)

Year -.049∗ -.0365 1.41∗∗∗

(.0262) (.108) (.278)

Year2 -.000258 -.0747∗∗∗

(.00216) (.0133)

Year3 .00103∗∗∗

(.000182)

R2 0.932 0.932 0.933
N 8,678 8,678 8,678

Standard errors in parentheses

Precipitation amounts are monthly averages in millimeters.

Fixed effects for each region-season combination

are included, but not displayed.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure 3 compares temperature data for the Rabi season in the state of Uttarakhand,

which had statistically significant temperature trend coefficients, to that of the Rabi season

in the state of Chhattisgarh, which did not. The graphs demonstrate that significance

differences were not due to different amounts of data used to estimate the two trends -

indeed, all state-seasons had temperature and precipitation data for at least 47 of the 50

years in the study.

Few precipitation trends had significant coefficients for all of the 3 cubic parameters,

when separated by state and season. All of the 6 state-seasons for which coefficients were

significant showed a similar pattern to the pooled trend in Column (3) of Table 2, with

precipitation levels rising early in the period, then falling, then rising again. The larger

number of insignificant state-season trends for precipitation may be partially due to the

increased data demands of estimating a cubic trend, but also to a less clear pattern of

precipitation change in the data. Figure 4 compares the precipitation patterns for the Kharif

season in the state of Meghalaya, which had significant trend coefficients, to patterns for the

Annual season in the state of Maharashtra, which did not. Keeping the scales of both

graphs constant, the comparison reveals stark differences in precipitation levels, trends, and

in variance across state-seasons that underlie the overall sample trends in Table 2.

To ensure that our estimations of climate trend impacts are not affected by the polynomial

specifications we employ, we estimated a linear trend as one of our alternate specifications

and found that this did not affect our estimate of impact on yield.

3.2 Yield model results

Tables 3 shows estimates of the effects of temperature and precipitation changes on the

yields for different crops from the yield model (Equation 1), in which the dependent variable

is Ln(Y ield). The different crops exhibit several similarities and some differences in the

nature of the relationship between climate variables and yield. The magnitudes, however,

exhibit more variation across crops. For each crops with the exception of sugarcane, the

effect of precipitation on yield is concave with both the linear and quadratic terms being
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Table 3: Temperature and Precipitation Effects on ln(Yield) – Main specification

Cotton Sorghum Rice Sugarcane Wheat

Temp .548∗ 0.0712 0.0496 -.386∗∗∗ 0.0232
(0.29) (0.069) (0.033) (0.100) (0.028)

Temp2 -0.00952 -0.00185 -.00214∗∗ .00798∗∗∗ 0.000025
(0.01) (0.002) (0.001) (0.002) (0.001)

Precip .00521∗∗ .00585∗∗∗ .00118∗∗∗ .0017∗ .00389∗∗

(0.0027) (0.0013) (0.0004) (0.0009) (0.0019)

Precip2 -9.19e-06∗∗ -.00001∗∗∗ -1.09e-06∗∗ -4.04E-06 -.0000236∗∗

(0.000004) (0.000003) (0.000000) (0.000004) (0.000009)

R2 0.981
N 3,877

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

significant at either the 5% or 1% level. For sugarcane, the quadratic term for precipitation

is insignificant. For temperature, cotton, sorghum and rice exhibit a concave relationship,

while sugarcane and wheat each differ from the rest. Wheat and sorghum are the only crops

for which the effect of temperature is insignificant. The level effect of temperature is an

order of magnitude higher for cotton and sugarcane relative to that for the other crops.

Table 4: Point at which increase in temperature or precipitation causes yield to decline

Cotton Sorghum Rice Sugarcane Wheat
Temp (deg C) 28.8 19.2 11.6 24.2 NA

Precip(mm) 283.5 292.5 541.3 210.4 82.4

A concave relationship between yield and a climate variable means that the rate of

increase is diminishing with the increase in the climate variable, and therefore beyond a

certain point further increase in the variable is detrimental to yield. Table 4 shows the point

at which an increase in temperature or precipitation causes yield to decline, the exception

being sugarcane for which the point is a local minimum. The functional form for wheat (see
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Table 3) implies there is no such point for the effect of temperature. These results are broadly

consistent with other estimates of climate impacts on crop yields in the literature, which show

diminishing marginal effects of temperature and precipitation on yields, and negative effects

beyond the same approximate levels. See, for example, Schlenker and Roberts (2008).

Table 5: Marginal effects at the mean Temperature and Precipitation for the Main Specifi-
cation

Mean Cotton Sorghum Rice Sugarcane Wheat
Temp (22.13 C) 12.7% -1.1% -4.5% -3.3% 2.4%

Precip (130.45 mm) 0.3% 0.3% 0.1% 0.1% -0.2%

Table 5 shows the marginal effect of a unit increase in temperature or precipitation at the

sample mean level of temperature, which is 22.13 degrees Celsius, and the sample mean level

of precipitation, which is 130.45 mm. It shows that, at the sample mean level of temperature,

precipitation increases have a positive effect on yield for each crop but wheat. At the sample

mean level of precipitation, temperature increase has a negative effect for yield of sorghum,

rice and sugarcane and a positive effect for cotton and wheat.

3.3 Impact of climate trends on yield

To determine how climate trends affected yields during the period of our study, we create a

set of de-trended climate variables from our climate model results that simulate temperatures

and precipitation in the absence of a climate trend. Substituting the predicted de-trended

climate variable into the estimated yield model, we predict the counterfactual yield in the

absence of climate trends. See Section 2.2.4 for more details.

Table 6 shows the mean of the average annual state–level impact of the estimated climate

trends for the population of states, %∆̂Ycs, which is computed as shown in Equation (13).

Comparing the mean and standard deviation of the average annual state–level effects, we

see considerable variation across states for each combination of crop and season. We are,

however, unable to infer the statistical significance of the state–level effects for any crop in a
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Table 6: Climate change impacts by Crop and season – Main Specification. Table shows the
mean across all states of the state–level annual average percentage impact of climate trends

on yield, %∆̂Ycs, which is computed as shown in Equation (13), the standard deviation of the
state–level impact for the population of states and the value for the median state. Note: A
positive value implies that actual yield was higher relative to a counterfactual not involving
a climate trend.

Tdetrend Pdetrend Tdetrend &
Pdetrend

(1) (2) (3)
Cotton Mean 1.2% 0.9% 2.1%

(Kharif) Std dev 2.7% 4.8% 5.2%
Median 0.5% 1.2% 1.6%

Sorghum Mean -0.3% 0.7% 0.4%
(Kharif) Std dev 1.1% 4.4% 5.0%

Median -0.5% 1.4% 1.2%
Sorghum Mean -0.3% 1.3% 1.0%

(Rabi) Std dev 0.4% 2.3% 2.1%
Median -0.1% 1.5% 3.9%

Rice Mean -0.9% 0.3% -0.7%
(Kharif) Std dev 1.2% 1.5% 1.7%

Median -1.0% 0.3% 2.4%
Rice Mean 0.1% 0.8% 0.9%

(Rabi) Std dev 1.2% 0.8% 1.4%
Median 0.2% 0.7% 4.0%

Sugarcane Mean -1.5% 0.3% -1.2%
(annual) Std dev 4.6% 1.1% 4.8%

Median 0.0% 0.4% 2.6%
Wheat Mean 0.1% 0.5% 0.6%
(Rabi) Std dev 0.8% 1.8% 1.9%

Median -0.1% 0.6% 3.4%

given season at this point and for which we perform bootstrapped simulations (See Section

3.5).

3.4 Sensitivity to yield and climate model specifications

We tested the sensitivity of results in Table 6 to different specifications of the yield model.

Table 7 shows the mean of the average annual state–level impact of temperature and pre-
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Table 7: Climate change impacts by Crop and season under different yield and climate model
specifications. Table shows the mean across all states of the state–level annual average per-

centage impact of climate trends on yield, %∆̂Ycs, which is computed as shown in Equation
(13), the standard deviation of the state–level impact for the population of states and the
median value state.Note: A positive value implies that actual yield was higher relative to a
counterfactual not involving a climate trend.

Variations with respect to the main specification
Main spec.
(Eq. 1)

Interaction
terms for
T & P

Area
weighted
regression

Yield
as dep.
variable

Linear cli-
mate trend

(1) (2) (3) (4) (5)
Cotton Mean 2.1% 1.4% 2.8% 1.1% 1.2%
(Kharif) Std dev 5.2% 12.6% 24.3% 7.1% 5.3%

Median 1.6% 3.2% 4.1% 1.2% 0.5%
Jowar Mean 0.4% -2.7% -0.8% 0.9% -1.0%
(Kharif) Std dev 5.0% 14.2% 4.1% 4.8% 4.0%

Median 1.2% 1.3% -0.2% 1.4% -0.2%
Jowar Mean 1.0% 0.4% 0.2% 0.6% 0.6%
(Rabi) Std dev 2.1% 1.4% 0.9% 1.9% 1.0%

Median 3.9% 2.4% 1.1% 3.0% 2.3%
Rice Mean -0.7% -0.5% -0.1% -0.5% -1.2%
(Kharif) Std dev 1.7% 2.2% 2.0% 1.2% 1.5%

Median 2.4% 3.9% 4.5% 2.6% 0.9%
Rice Mean 0.9% 0.6% 0.9% 0.5% -0.5%
(Rabi) Std dev 1.4% 1.2% 1.0% 0.9% 0.8%

Median 4.0% 2.4% 3.5% 2.5% 0.7%
Sugarcane Mean -1.2% -0.4% -2.5% -0.3% -2.9%
(Annual) Std dev 4.8% 4.9% 16.8% 8.2% 8.5%

Median 2.6% 6.8% 31.5% 29.7% 1.8%
Wheat Mean 0.6% 0.6% -0.9% 0.3% 1.0%
(Rabi) Std dev 1.9% 2.1% 5.0% 2.3% 1.1%

Median 3.4% 3.8% 2.4% 4.9% 2.3%

cipitation trends combined on yield, %∆̂Ycs, under different model specifications. Column

(1) is under the main specification, and contains the same values as Column (3) from Table

6. Column (2) depicts the results when we include interaction terms for temperature and

precipitation. Column (3) depicts the results of an area weighted regression of the main

specification. Column (4) depicts the results when yield instead of logarithm of yield is the
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dependent variable. Finally, Column (5) depicts the impact of fitting a linear temperature

and precipitation trend instead of the quadratic and cubic trends used in the main specifica-

tion. The regression results for the yield model under these different alternate specifications

are included in the supporting information document.

The directional impact of the climate trends suggested by the main specification appears

robust to the specification for most crops and seasons.

3.5 Bootstrap simulations

Table 8: Climate impacts from 1000 bootstrap simulation of the Main Specification. For
each crop, results are shown for three states with the highest yield in 2009. Note: A positive
value for average impact implies that actual yield was higher relative to a counterfactual not
involving a climate trend.

Crop-
season

State
avg.

std.
err

t-stat State
avg.

std.
err

t-stat State
avg.

std.
err

t-stat

(1) of (1) (1) of (1) (1) of (1)
Cotton PU HA GU
Kharif 1.3% 10.2% 0.12 -6.1% 8.4% -0.73 12.6% 9.9% 1.26
Sorghum CH AP KA
Kharif 1.9% 2.5% 0.78 -0.8% 2.7% -0.29 0.9% 2.1% 0.44
Sorghum KA MP MA
Rabi -0.3% 2.2% -0.11 1.5% 1.1% 1.40 -1.6% 1.4% -1.14
Rice PU AP TN
Kharif 2.2% 1.7% 1.29 -2.5%∗ 1.4% -1.78 -3.9% 2.4% -1.60
Rice TN KA WB
Rabi -1.1% 1.0% -1.18 -0.7% 0.7% -0.91 1.8%∗∗ 0.8% 2.40
Sugarcane KA MA TN
Annual 0.2% 0.9% 0.20 0.8% 1.1% 0.71 1.7% 1.2% 1.49
Wheat PU HA UP
Rabi 2.0% 1.8% 1.09 2.3% 1.5% 1.57 0.6% 1.1% 0.53
State name abbreviations: AP – Andhra Pradesh, CH – Chhattisgarh, GU – Gujarat, HA – Haryana,

MA – Maharashtra, MP – Madhya Pradesh, PU – Punjab, TN – Tamil Nadu, UP – Uttar Pradesh,

WB – West Bengal
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

To obtain standard errors for our estimate of the yield impacts, we employ a non–

parametric bootstrap, and resample our data 1,000 times for each specification. For the
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sake of brevity, we discuss only the results for the main specification here. We, however,

did verify that the bootstrapped results are similar for the alternative specifications and

the tables are included in the appendix. Table 8 shows the average annual impact at the

state–level for three select states for each crop–season combination. The three states are

those that had the highest yields in the year 2009 for each crop–season pair. The state

annual average impact is for the main specification while the standard deviation of the state

annual average is from the bootstrap iterations and t-statistic is simply the ratio of the state

annual average to the standard deviation. The t-statistic suggests that climate trends have

not had a significant impact on yield for the three high–yield states, with the exception of

Rabi season rice in the state of West–Bengal, whose yield has increased by 1.8% (significant

at the 5% level), and Kharif season rice in the state of Andhra Pradesh, whose yield has

declined by −2.5%. Only for sugarcane and Wheat, all the three high–yield states appear

to have gained from the climate trends, while for each remaining crop–season pair, at least

one state has gained and one state has suffered.

To summarize, our analysis suggests that temperature and precipitation trends over the

last five decades have had a mixed effect on crop yields, with some regions benefitting

and some regions being affected adversely. However, our bootstrap simulations suggest the

regional impacts effects are generally insignificant.

4 Conclusion

This study sought to examine how climate trends during the past 50 years affected 5 major

crop yields in India. By taking advantage of a data on a panel of states and union territories

within India, we construct a model that accommodates a variety of short- and long-term

farmer adaptations, and that flexibly determines how climate variables affect yields. This is

also one of the first to apply this approach to India’s agriculture sector.

We identify clear effects of climate variables on yields that suggest that temperature and

precipitation increases can be harmful in some ranges, and helpful in others. The trends we

estimate for each state and season over the past 50 years are relatively weak. Less than a
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third of the temperature trends estimated were statistically significant, and less than one

tenth of precipitation trends were significant. Also, precipitation levels lost only 0.049 mm

per year on average, or about 2.45 mm over the entire period (Table 2). Our climate trend

results are not inconsistent with other findings. Lobell et al (2011) finds that temperature

and precipitation trends in India were between 0 and 1 standard deviation of year-to-year

fluctuations in most regions, and their maps show an even mix of positive and negative

trends across regions. Our yield model, i.e., the relationship between the climate variables

and yield is consistent with the agronomic literature would suggest and is robust across

different specifications. However, different from earlier studies, such as Lobell et al (2011),

we find that observed climate trends over the past 50 years seem to have had a statistically

significant effect only on a small combination of crop, state and season.

It is important to stress that these results do not directly bear on predictions of the

future impacts of climate change. The Intergovernmental Panel on Climate Change (IPCC)

climate model projects that South Asia will experience an increase of 0.5 degrees Celsius

along with a 4% precipitation increase from 2010 to 2039 during Kharif season months, in

certain scenarios.18 By 2100, some scenarios predict a 2 degree temperature increase, and

a 7% precipitation increase.19 Depending on regional variations, technology advances, and

farmer adjustments, these changes could have significant positive or negative impacts on

Indian agricultural output. A limitation of our study relative to some of the other studies

such as Guiteras (2009) is that our only climate variables are seasonal average temperature

and precipitation for each region. Therefore, we are unable to capture the effect of other

types of changes such as more extreme weather weather such as increase in daily maximum

and minimum temperature (or precipitation) or increase in the number of hotter and colder

days and nights such that change in seasonal average value of the climate variable is relatively

small and yet lead to a large impact on yield.

However, our results shed light on the importance of uncertainty in future impacts.

Projections of future trends are estimated with considerable error, and do not benefit from

18Guiteras (2009)
19Kumar and Parikh (2001)
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realized year-to-year data for the periods they study, as our study does. Thus, studies

reporting point estimates of climate change impacts without accurate error predictions can be

misleading, with potentially costly implications to policymakers that rely on these estimates.

Moreover, the agricultural sector may adapt to any climate changes, and models that

do not account for adaptations may overstate impacts. In our accounting of India’s past,

we find considerable heterogeneity in climate levels and trends amongst regions, and large

differences in yield sensitivities to climate change across crop types. Studies projecting

future implications of climate change may benefit from these considerations, since estimating

average effects across regions and crops may bias climate change effects downward, if crop

choices across regions are responsive to climate differences.
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Table 9: Crops Grown by State and Season

Season

State Kharif (June - Oct) Rabi (Nov - May) Annual

Andhra Pradesh Rice, Cotton, Sorghum Sorghum, Wheat Sugarcane

Arunachal Pradesh Rice Wheat Sugarcane

Assam Rice, Cotton Rice, Wheat Sugarcane

Bihar Rice, Sorghum Rice, Wheat Sugarcane

Chhattisgarh Rice, Cotton, Sorghum Wheat Sugarcane

Dadra and Nagar

Haveli

Rice

Daman and Diu Rice

Delhi Rice, Sorghum Wheat

Goa Sugarcane

Gujarat Rice, Cotton, Sorghum Sorghum, Wheat Sugarcane

Haryana Rice, Cotton, Sorghum Wheat Sugarcane

Himachal Pradesh Rice, Cotton Wheat Sugarcane

Jammu and Kashmir Rice, Sorghum Wheat Sugarcane

Jharkhand Sorghum Wheat Sugarcane

Karnataka Rice, Cotton, Sorghum Rice, Sorghum, Wheat Sugarcane

Kerala Rice, Cotton, Sorghum Rice Sugarcane

Madhya Pradesh Rice, Cotton, Sorghum Sorghum, Wheat Sugarcane

Maharashtra Rice, Cotton Rice, Sorghum, Wheat Sugarcane

Manipur Rice Sugarcane

Meghalaya Rice Wheat Sugarcane

Mizoram Rice Sugarcane

Nagaland Rice, Sorghum Wheat Sugarcane

Orissa Rice, Cotton, Sorghum Rice, Wheat Sugarcane

Pondicherry Rice, Cotton, Sorghum Rice

Punjab Rice, Cotton Wheat Sugarcane

Rajasthan Rice, Cotton, Sorghum Wheat Sugarcane

Sikkim Rice Wheat

Tamil Nadu Rice, Cotton, Sorghum Rice, Sorghum Sugarcane

Tripura Rice, Cotton Rice, Wheat Sugarcane

Uttar Pradesh Rice, Cotton, Sorghum Rice, Wheat Sugarcane

Uttarakhand Rice Wheat Sugarcane

West Bengal Rice, Cotton, Sorghum Rice, Wheat Sugarcane

Crops are shown when more than 3 years of data exist in our sample for a given state and

season. Some crops may be omitted because of a lack of data, and not because those

crops are not grown in a given state and season.
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Table 10: Mean Yields by State and Crop

State Cotton Sorghum Rice Sugarcane Wheat

Andhra Pradesh 0.39 0.70 2.04 74.50 0.58
Arunachal Pradesh 1.08 18.78 1.50
Assam 0.11 1.22 39.21 1.05
Bihar 0.96 1.17 38.85 1.52
Chhattisgarh 0.29 0.91 1.19 2.52 1.01
Dadra and Nagar Haveli 1.63
Daman and Diu 1.99
Delhi 0.85 1.60 2.23
Goa 52.60
Gujarat 0.47 0.69 1.23 65.55 1.92
Haryana 0.51 0.24 2.38 49.41 2.84
Himachal Pradesh 0.27 1.21 15.03 1.21
Jammu and Kashmir 0.52 1.83 7.54 1.14
Jharkhand 0.79 37.78 1.66
Karnataka 0.26 0.85 2.16 82.40 0.60
Kerala 0.24 0.49 1.80 67.63
Madhya Pradesh 0.23 0.82 0.84 32.71 1.19
Maharashtra 0.24 0.75 1.47 80.23 0.94
Manipur 1.76 38.02
Meghalaya 1.35 2.29 1.74
Mizoram 1.16 8.84
Nagaland 1.22 1.06 46.25 1.86
Orissa 0.38 0.68 1.42 58.96 1.43
Pondicherry 0.53 1.00 2.27
Punjab 0.61 2.91 53.58 3.15
Rajasthan 0.31 0.38 1.11 40.31 1.87
Sikkim 1.29 1.32
Tamil Nadu 0.33 0.93 2.30 93.63
Tripura 0.23 1.32 47.96 2.27
Uttar Pradesh 0.16 0.76 1.22 49.26 1.83
Uttarakhand 1.93 58.07 1.95
West Bengal 0.36 0.48 2.02 59.53 1.91

Total 0.33 0.73 1.61 54.29 1.60

Yields are shown in tons per hectare.
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Table 11: Mean Temperatures by State and Season

Season

State
Annual

(Jan - Dec)
Kharif

(June - Oct)
Rabi

(Nov - May)

Andhra Pradesh 27.99
Arunachal Pradesh 12.90 17.39 9.70
Assam 23.19 26.87 20.58
Bihar 25.38 28.83 22.92
Chhattisgarh 25.77 27.22 24.73
Dadra and Nagar Haveli 25.97 23.94
Daman and Diu 28.37 25.24
Delhi 25.24 30.06 21.79
Goa 25.21 24.87 25.46
Gujarat 26.86 29.08 25.28
Haryana 24.76 29.84 21.14
Himachal Pradesh 11.34 15.89 8.12
Jammu and Kashmir 3.46 11.15 -2.02
Jharkhand 25.08 27.61 23.27
Karnataka 25.24 24.85 25.53
Kerala 26.00 25.43 26.43
Madhya Pradesh 25.59 27.74 24.06
Maharashtra 26.12 26.67 25.73
Manipur 19.31 22.47 17.06
Meghalaya 22.26 25.14 20.20
Mizoram 22.56 24.59 21.12
Nagaland 18.80 22.89 15.88
Orissa 25.96 27.39 24.94
Pondicherry 28.06 28.94 27.43
Punjab 24.16 29.68 20.22
Rajasthan 26.08 30.13 23.20
Sikkim 4.67 8.64 1.84
Tamil Nadu 26.91 27.61 26.43
Tripura 24.79 27.46 22.89
Uttar Pradesh 25.42 29.35 22.63
Uttarakhand 11.96 16.05 9.03
West Bengal 25.68 28.30 23.80

Average 22.03 25.18 20.16

Temperatures are in degrees Celsius.
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Table 12: Mean Monthly Precipitation by State and Season

Season

State
Annual

(Jan - Dec)
Kharif

(June - Oct)
Rabi

(Nov - May)

Andhra Pradesh 148.17
Arunachal Pradesh 229.59 404.17 104.89
Assam 199.56 340.23 97.82
Bihar 95.37 204.27 17.59
Chhattisgarh 107.75 236.50 16.16
Dadra and Nagar Haveli 474.64 6.56
Daman and Diu 172.61 3.59
Delhi 48.63 101.20 11.09
Goa 214.02 483.07 21.84
Gujarat 55.89 131.19 3.44
Haryana 46.00 91.61 12.65
Himachal Pradesh 128.85 197.39 79.69
Jammu and Kashmir 56.27 57.24 55.57
Jharkhand 105.89 224.84 20.92
Karnataka 93.10 188.44 24.80
Kerala 233.60 434.10 90.99
Madhya Pradesh 83.07 184.44 10.11
Maharashtra 94.44 211.11 11.60
Manipur 164.25 290.50 74.07
Meghalaya 328.70 610.86 127.15
Mizoram 227.65 410.52 97.03
Nagaland 180.94 313.10 86.54
Orissa 120.51 250.37 29.00
Pondicherry 142.65 234.62 77.29
Punjab 51.95 98.53 18.22
Rajasthan 34.94 75.04 5.74
Sikkim 167.01 318.21 59.01
Tamil Nadu 85.93 121.98 60.70
Tripura 174.94 293.08 90.50
Uttar Pradesh 77.90 167.71 13.00
Uttarakhand 125.91 233.21 49.27
West Bengal 145.01 292.06 40.93

Average 131.74 245.48 48.57

Precipitation amounts are in mm.
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Figure 1: Temperature Trend (Quadratic Fit)

The temperature trend is predicted using the quadratic specification in Table 1.
Temperature markers are the average temperature values for each year of data, across all regions and

seasons.
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Figure 2: Precipitation Trend (Cubic Fit)

The precipitation trend is predicted using the cubic specification in Table 2.
Precipitation markers are the average monthly precipitation values for each year of data, across all

regions and seasons.
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Figure 3: State-Season Temperature Trend Comparisons

Temperature trends are predicted using the quadratic specification of Equation 6.
Vertical axis ranges are kept the same in both graphs.
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Figure 4: State-Season Precipitation Trend Comparisons

Precipitation trends are predicted using the cubic specification of Equation 6.
Vertical axis ranges are kept the same in both graphs.
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