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Abstract 
 
This paper reframes Peck’s (2003) approach to estimating impacts on endogenous subgroups 
in terms of Frangakis and Rubins’ (2002) notions of principal stratification and principal 
effects, and shows her estimators can be derived using proxy variables for the (partly) omitted 
indicator of principal stratum membership.  It presents a specification test and describes a 
method for estimating bounds for principal effects. 
 

Introduction 
 
Frangakis and Rubin (FR; 2002) introduced the influential notions of principal stratification and 
principal effects to methodological research on causal inference.  However, to paraphrase 
Moliere, other researchers had been “speaking principal stratification without knowing it” 
prior to or concurrent with FR’s publication.  Angrist, Imbens, and Rubin (AIR; 1996) is perhaps 
the best-known example of this, and their work was discussed by FR.  This article focuses on 
another early “speaker of principal stratification,” Peck’s (1999, 2003) presentation of two 
estimators of what are now, via FR, often referred to as principal effects (Peck (2003) did, in 
fact, discuss FR’s work, without making the explicit link).  Her estimators were applied to the 
random assignment evaluation of a welfare reform initiative in New York State, and her 
methods have subsequently been applied to the evaluation of other social programs (Peck, 
2013).   
 
The present article builds upon Peck (2003; hereafter, Peck).  First, it reframes Peck’s 
estimands in terms of the language of principal stratification and principal effects.  Second, it 
derives several proxy variable estimators of principal effects, including Peck’s two estimators.  
Peck discussed estimation in terms of instrumental variables, but we believe it is more useful 
to frame the derivation of estimators in terms of using proxy variables for the (partly) omitted 
indicator of principal strata membership.  Third, it discusses methods for testing and assessing 
the assumptions underlying the proxy variable estimators, including presenting a specification 
test similar to tests proposed by Schochet and Burghardt (2007).  It also presents the 
asymptotic bias of one of the proxy estimators, permitting assessment of the sensitivity of the 
estimates to violations of the validating assumptions.  Fourth, it introduces an assumption-
free method for estimating upper and lower bounds for principal effects.  It concludes with a 
brief discussion of Bayesian approaches to estimating principal effects. 
 

Peck’s Estimands in the Language of Principal Stratification 
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We present the estimands in terms of the language of principal stratification, adapting 
notation from FR.  For expository purposes, we use the running example of examining, in the 
context of a random assignment evaluation, the impact of treatment utilization. 
 
Observed Data 
 
Assume a random sample of size n from the population of interest, selected to participate in a 
random assignment evaluation.  Let Zi be the random assignment indicator, where Zi = 1 
means participant i was assigned to the treatment group and Zi = 0 means participant i was 
assigned to the control group.  Intermediate variable Si is the treatment utilization indicator, 
where Si = 1 means participant i chose to utilize the treatment and Si = 0 means participant i 
chose not to (in a context different from the running example, Si might instead be the 
indicator of which of two versions of the treatment is offered to the participant by program 
staff).  In many evaluations the treatment is not available to control participants and, in such 
circumstances, Si = 0 for all control participants.  Yi denotes participant i's outcome, and may 
be continuous or discrete, and Xi is a vector of baseline covariates.  It is assumed that Zi, Si, Yi, 
and Xi are observed for all participants. 
 
Potential Outcomes 
 
Let Si(1) denote the treatment utilization status that would obtain if, possibly contrary to fact, 
participant i  were randomly assigned to the treatment group.  Si(1) = 1 means that participant 
i would use the treatment, and Si(1) = 0 means that participant i would not use the treatment.  
Si(0) is analogous to Si(1), for the hypothetical situation where participant i is randomly 
assigned to the control group: Si(0) = 1 means that participant i would use the treatment, and 
Si(0) = 0 means that participant i would not use the treatment.  As noted above, in many 
randomized experimental evaluations, Si(0)=0 for all participants.  S(1) and S(0) are 
conceptualized as intermediate potential outcomes. 
 
Let Yi(1) be the outcome that participant i would obtain if, possibly contrary to fact, she were 
randomly assigned to the treatment group and Yi(0) is the analogous potential outcome for 
hypothetical assignment to the control group. 
 
Note the links between observed and potential outcomes: Si = Si(Zi) and Yi = Yi(Zi).  That is, if 
participant i is assigned to the treatment group, then potential outcomes Si(1) and Yi(1) are 
observed but Si(0) and Yi(0) go unobserved, and the reverse occurs if the participant is 
assigned to the control group.  Also note that all potential outcomes are (partially observed) 
baseline covariates, as they are pretreatment characteristics of participants. Because we are 
focusing on random assignment evaluations, we assume Zi is independent of the set of 
baseline covariates (Xi, Si(1), Si(0), Yi(1), Yi(0)). 
 
Principal Strata and Principal Effects 
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The individual treatment effect is        ( )     ( ), and represents the impact of being 
assigned to the treatment group vs. being assigned to the control group for participant i.  The 
average treatment effect (ATE) is a commonly studied causal parameter, and is defined as the 
population average individual treatment effect 
 

     [  ]   [  ( )     ( )] 
 
In the context of a random assignment evaluation, the ATE is the intention-to-treat (ITT) 
impact of treatment.  Because some participants randomized to the treatment group will 
choose not to actually utilize the treatment (and so will have Si = Si(1) = 0), and, depending on 
the design of the evaluation, some randomized to the control group may choose to utilize the 
treatment (and so will have Si = Si(0) = 1), the ITT impact does not directly reflect the average 
impact of treatment utilization.  Peck’s interest, in the context of the running example, was 
alternatively in the effect of treatment utilization on those randomized to the treatment 
group, and can be framed in terms of FR’s notions of principal stratification and principal 
effects, the topic to which I turn now. 
 
Members of the population of interest can be partitioned into four subpopulations based on 
their Si(1) and Si(0) values, where each subpopulation is denoted as basic principal stratum 
BPS(a, b), for a = 0, 1 and b = 0, 1, 
 

   (   )  {  |   ( )      ( )      
 
where here i indexes members of the population of interest.  For example, BPS(0,0) is the 
subpopulation of individuals who would not utilize the treatment if assigned to the treatment 
group and also would not utilize it if assigned to the control group.  FR termed this 4-way 
partition the basic principal stratification for the population (with respect to S(1) and S(0)).  It 
is possible to create less differentiated partitions of the population, called principal 
stratifications, by combining strata from the basic principal stratification.  Peck was interested 
in the principal stratification, for a = 0, 1, 
 

  ( )     (   )      (   ) 
 
which combines the four basic principal strata into two strata.  Here, PS(1) is the 
subpopulation of individuals who, if randomized to the treatment group, would utilize the 
treatment, and PS(0) is the subpopulation of individuals who, if randomized to the treatment 
group, would not utilize the treatment.  In the common but not universal circumstance that it 
is impossible for control participants to utilize the treatment, BPS(0, 1) and BPS(1, 1) are 
empty and, for a = 0, 1, PS(a) = BPS(a, 0). 
 
Peck’s aim was to estimate and make inferences about the conditional average treatment 
effects 
 

  ( )    [   |      ( )]   [   |   ( )   ] 
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and 
 

  ( )   [   |      ( )]   [   |   ( )   ] 
 
FR termed causal parameters such as these principal effects with respect to principal 
stratification {PS(1), PS(0)}, because they are average treatment effects defined within 
principal strata.  An analogous pair of principal strata and principal effects could be defined in 
terms of S(0) rather than S(1), and the same statistical methods presented below would, 
suitably adjusted, apply to these as well.  PE(1) and PE(0) are typically of most substantive 
interest when it is impossible for control group participants to utilize treatment (i.e., when 
S(0) is always equal to zero), and Peck assumed this to hold.  When this holds, PE(1) is the 
impact of utilizing vs. not utilizing treatment for the subpopulation that would utilize 
treatment if they had the chance, and PE(0) is the direct effect of treatment assignment on 
never-users.  In the parlance of AIR, PS(1) is the subpopulation of compliers, and PE(1) is the 
local average treatment effect (LATE); AIR assumes PE(0) = 0.  Note, though, that the principal 
effect estimators presented below do not rely on the assumption that Si(0)=0 for all i. 
 

Continuous Proxy Variable Estimators 
 
We present three continuous proxy variable estimators of principal effects, dropping the i 
subscript to limit clutter. 
 
First, let          ( )   [ ( )| ]; Hill, Brooks-Gunn, and Waldfogel (2003) refer to 
Prox as the principal score.  Then 
 

 [ | ( )         ]   [ | ( )    ]      (1) 
 
since Prox is a function of X.  Further, 
 

 [ ( )|        ]   [ ( )|      ]   [ ( )|    ]         (2) 
 
To see the first equality, recall that Z is independent of all combinations of baseline variables.  
To see the second and third equalities, we adapt an argument from Rosenbaum (2010, p. 73): 
 
 [ ( )|    ]   { [ ( )|      ]|       { [ ( )| ]|       [    |    ]      

  [ ( )| ]   [ ( )|      ] 
 
If we conceive of S(1) as a (partially) omitted variable, since it is unobserved in the control 
group, then Prox is a proxy variable for S(1) (Wooldridge, 2010, pp. 67-69):  

 (1) indicates that Prox is redundant given omitted variable S(1) (and X and Z) in 
predicting Y, and  

 (2) indicates that Z and X are redundant given proxy Prox in determining the linear 
projection of S(1) on Prox, Z, and X. 
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Assume 
 
 [ | ( )    ]        ( )         ( )              ( )     ( )   (3) 
 
Because Z is independent of all baseline variables (including S(1)), 
 
 [ | ( )      ]   [ ( )| ( )      ]   [ ( )| ( )  ], 
 
 [ | ( )      ]   [ ( )| ( )      ]   [ ( )| ( )  ], and 
 

 [ | ( )  ]   [ | ( )      ]   [ | ( )      ] 
       ( )         ( )      (4) 

 
Thus, 
 

 [ | ( )     ]        (     )  
 
and 
 
 [ | ( )     ]                (5) 

 
Linear regression (3) cannot be fit on the full sample, because S(1) is (partly) omitted.  
However, applying (1) and (2) to (3), we obtain 
 
 [ |        ]                                                 
            (6) 

 
Via fitting a logistic regression of S(1)=S on X on the treatment subsample, generated 

regressor     ̂ can be determined for all sample participants, and then linear regression (6), 

with     ̂ in place of Prox, can be fit on the entire sample.  Via the (6) regression coefficient 
estimates, estimates of PE(1) and PE(0) can be computed based on (5) and the fact that, by 
iterated expectation, for a=0, 1, 
 

  ( )   { [ | ( )     ]  
 
where the outer expectation is with respect to the conditional distribution of X given S(1)=a; 

i.e., the distribution of X within PS(a).  Letting  ( )̅̅ ̅̅ ̅ denote the mean X for the subsample of 

treatment participants who have S(1)=1 and  ( )̅̅ ̅̅ ̅ denote the mean X for the subsample of 
treatment participants who have S(1)=0, we get 
 

  ̂( )    ̂    ̂  (  ̂    ̂) ( )̅̅ ̅̅ ̅ 
 



6 
 

and 
 

  ̂( )    ̂    ̂ ( )̅̅ ̅̅ ̅ 
 
However, there are good reasons to doubt the adequacy of using (6) given likely issues with 

multicollinearity.  To illustrate this, imagine that     ̂ was generated via a linear probability 
model rather than a logistic regression model.  In this circumstance,    and    are not 

identified, since     ̂ is a linear combination of the components of X (and 1).  Since estimates 
of these two regression coefficients are needed to estimate both principal effects, the use of 

(6) would be doomed.  Using a nonlinear model like logistic regression to generate     ̂ for 
use in an assumed linear model obviates the possibility of perfect collinearity, but problems 
with multicollinearity would not be unexpected.  If this occurred, then extremely large 
samples might be needed to obtain precise estimates of the principal effects.  The use of ridge 
regression or the lasso (James, Witten, Hastie, & Tibshirani, 2013), rather than OLS, for fitting 
(6) could then be considered as approaches for dealing with the multicollinearity. 
 
A second approach to using (6) is to assume that some of the regression coefficients in (3) are 
equal to zero.  This, in effect, is the approach taken by Jo and Stuart (2009) with their 
assumption of principal ignorability.  In the present context, consider the following 
``abbreviated’’ version of (3) 
 

 [ | ( )    ]        ( )         ( )         ( )  (7) 
 
This leads to the ``abbreviated’’ version of (6) 
 

 [ |        ]                                    (8) 
 
Now we have 
 

 [ | ( )  ]        ( )       (9) 
 
There are no multicollinearity concerns with the regressors associated with    or   , the only 
regression coefficients involved in (9).  In place of (8), the following model should be fit 
 

 [ |      ]                           [ |    ]         [ |    ]  
 
or, better, fit the following to obtain estimates of    and    
 

 [ |      ]          (    )                (10) 
 
where h(Prox) is some suitable (linear or nonlinear) function of Prox.  In (10) we are unable to 
distinguish the contributions of   ,   , and   , but these are not needed to estimate the 
principal effects. 
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Equation (9) implies that  [ | ( )  ]   [ | ( )]; i.e., X is redundant given S(1).  Per (7), X 
may be associated with Y(1) and/or Y(0) given S(1), but it is unassociated with their difference 
given S(1). 
 
We now give a third continuous proxy variable estimator, originally presented by Peck.  
Assume 
 
 [ | ( )       ]   [ | ( )  ]        (11) 
 
That is, Prox is assumed redundant in predicting Y given S(1) and Z.  Then, given (2), Prox is a 
continuous proxy variable for S(1).  Consider the saturated (and hence correctly specified) 
linear regression model 
 
 [ | ( )  ]        ( )         ( )       (12) 
 
Per this equation, 
 

  ( )   [ | ( )       ]   [ | ( )       ]        
  ( )   [ | ( )       ]   [ | ( )       ]     

 
Note, in passing, that AIR do not make redundancy assumption (11) but do assume, in (12), 
that     .  This follows from their assumptions that there are no defiers and no direct effect 
of treatment assignment among never-takers. 
 
By assumption (11), and using (2), 
 
 [ |      ]   {  [ | ( )       ]|                              (13) 
 

Fitting (13), with generated regressor     ̂ in place of Prox, yields consistent estimates of the 
regression coefficients, from which the principal effects estimates can be computed. 
 
In summary, all three continuous proxy variable estimators are derived from fitting an 

appropriate linear regression using generated regressor     ̂, and the principal effects 
estimates are linear combinations of the regression coefficient estimates.  Since the regression 
coefficient estimators are asymptotically multivariate normal, the principal effects estimators 
are asymptotically normal.  As Peck noted, because a generated regressor is used, the 

estimation proceeds via a 2-step procedure (the logistic regression used to generate     ̂ is 
fit at step 1, OLS estimation of regression coefficients is step 2) which yields different standard 
errors than if the true values of Prox were used.  The bootstrap can be used to account for the 
2-step procedure in estimating standard errors. 
 

A Binary Proxy Variable Estimator 
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Let            ( ) be some binary variable that is a function of X (to be discussed 
below).  Note 
 

 [ ( )|       ]   [ ( )|     ]              
 
since Z is independent of all baseline variables and the right-hand side of the second equality 
is a saturated model and hence is correctly specified.  This can equivalently be written 
 
 ( )                        (14) 
 
Assume 
 
 [ | ( )        ]   [ | ( )  ]        (15) 
 
Then BProx is a proxy variable for S(1), since it is redundant in predicting Y and Z is redundant 
in predicting S(1). 
 
Now reconsider the saturated (and hence correctly specified) linear regression model (12), 
which can be written in error form as 
 

        ( )         ( )    
 
By assumption (15), BProx is uncorrelated with e.  Substituting for S(1) in the linear regression, 
we obtain 
 
                                 (16) 
 
where 
 

           
        

           
        

             
 
Solving for the regression coefficients from (12), we get     (17) 
 

              
         

              
         

 
We note that BProx, Z, and BProxZ are all exogenous in (16).  This suggests the following 
procedure: 



9 
 

 
1. Regress S(1)=S on BProx on the treatment group to obtain   ̂ and   ̂. 
2. Regress Y on BProx, Z, and BProxZ on the entire sample, obtaining estimates of the   
coefficients. 
3. Estimates of the   coefficients are obtained from (17) and the estimates from the first two 
steps. 
4. The estimates of the primary effects are obtained from the alpha estimates. 
 
Note that we can characterize the principal effects in terms of the  s and  s as: 
 

  ( )  
         

  
 

 
and 
 

  ( )    ( )        
 
As shorthands, let     denote  ( ( )   |       ) and    denote  [ |       ].  
Noting that, for instance,       ,     [ ( )|       ], and so on, we find that 
 

  ( )  
           

       
 

 
and            (18) 
 

  ( )  
           

       
 

 
Replacing the terms in the numerators and denominators by their sample analogues yields the 
estimators for the principal effects.  That is, 
 

 ̂    ̂(   |           ) 
and 

 ̂   ̂[ |           ]   ̂[ |           ] 
 
where the terms on the right-hand sides are subsample means. 
 
These expressions for the principal effects were obtained by Peck, but relying on a weaker 
assumption than (15).  Peck noted that, by iterated expectation, we have 
 

 [ |       ]       [ | ( )           ]       [ | ( )           ] 
 
and 
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 [ |       ]       [ | ( )           ]       [ | ( )           ] 
 
Make the redundancy assumption, implied by (15), that 
 
 [ | ( )]   [ | ( )      ]        (19) 
 
That is, assume that 
 

 [ | ( )           ]   [ | ( )   ]    [ | ( )           ] 
 
and that  
 

 [ | ( )           ]   [ | ( )   ]    [ | ( )           ] 
 
Under assumption (19) we have 
 

 [ |       ]        ( )        ( ) 
 
and 
 

 [ |       ]        ( )        ( ) 
 
Now solving for PE(1) and PE(0) gives (18). 
 
The binary proxy variable estimators given in (18) are asymptotically normally distributed; see 
the Appendix. 
 
Finally, suppose that we had two binary proxy variables, BProx1 and BProx2, both satisfying 
assumption (19).  Then consistent principal effects estimators could be derived from either of 
them.  If BProx1 is more strongly correlated with S(1) than is BProx2, then r1 (the error term 
when (14) is fit using BProx1) will have a smaller variance than will r2 (the error term when 
(14) is fit using BProx2).  This, in turn, implies that   in (16) will have smaller variance if BProx1 
rather than BProx2 is used.  That is, (16) will be a better-fitting model if BProx1 is used instead 
of BProx2.  Now, one way to produce a putative binary proxy variable BProx from X is to fit a 
logistic regression of S(1) on X in the treatment subsample, generate predicted probabilities of 
S(1)=1 for all participants in the sample, and then set a cutoff probability below which BProx is 
set to 0 and above which it is set to 1.  Using .5 as the cutoff produces an estimated Bayes 
classifier, which maximizes the proportion of correct classifications (James, Witten, Hastie, & 
Tibshirani, 2013).  That is, the Bayes classifier, defined as applying cutoff .5 to the true 
probabilities that S(1)=1,  maximizes the proportion of the population for which either 
BProx=1=S(1) or BProx=0=S(1) holds.  However, in general, BProx implemented using a cutoff 
of .5 will not produce a binary variable that is maximally correlated with S(1); often using a 
different cutoff produces a binary variable that is more strongly correlated with S(1) and 
hence produces sharper principal effects estimates. 
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Assessing Assumptions 

 
This section begins by presenting a specification test that can be used to assess the 
assumptions underlying any of the proxy variable estimators of PE(1) and PE(0) described 
above; indeed, it can be applied to any estimators of PE(1) and PE(0).  We then consider how 
to assess the redundancy assumptions underlying the two proxy variable estimators presented 
by Peck: (a) redundancy assumption (11) underlying the continuous proxy variable estimator 
derived from linear regression model (13) and (b) redundancy assumption (19) underlying the 
binary proxy variable estimator given in (18). 
 
A Specification Test 
 
It is possible to test the assumptions underlying a given estimator (whether based on proxy 
variables or not) of the principal effects by estimating the average treatment effect in two 
different ways, one that is consistent whether or not the underlying assumptions hold and the 
other that is consistent under the assumptions.  First, the ATE can be given by 
 

     [ |   ]   [ |   ] 
 
which leads to the “natural” estimator of the ATE by using the appropriate sample means in 
place of the population means.  The natural estimator is consistent and asymptotically normal 
whether or not the assumptions underlying the (proxy variable) estimator hold. 
 
Second, the ATE can also be characterized 
 

     ( ( )   )  ( )   ( ( )   )  ( ) 
 
This leads to a proxy variable estimator of the ATE by using one of the proxy variable 
estimators of the principal effects in place of the principal effects (note  ( ( )   ) and 
 ( ( )   ) can be estimated from the treatment subsample).  The resulting proxy variable 
estimator is a consistent and asymptotically normal estimator of the ATE under the 

appropriate assumptions.  Let         ̂       ̂      represent the difference between 

the natural and proxy variable ATE estimators.  If the appropriate assumptions hold, then the 
test statistic 
 

    

  (    )
 

 
is asymptotically standard normal.  The bootstrap can be used to estimate SE(diff).  Further, a 
bootstrap-within-the-bootstrap approach can be used to implement a percentile-t testing 
procedure that achieves asymptotic refinement (Cameron & Trivedi, 2005, pp. 378-379).  We 
reiterate that the bootstrap procedures should include the generation of the proxy variable 
regressor to account for the two-step nature of the proxy variable estimators. 
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Note that it is possible that proxy variable estimators for PE(1) and PE(0) are asymptotically 

biased due to  violation of their underlying assumptions and, at the same time, that    ̂      

is consistent due to the biases offsetting one another.  Thus, the power of the specification 
test may be extremely low at some alternatives; indeed, if the biases exactly offset one 
another, asymptotic power is equal to the size of the test. 
 
Assessing the Redundancy Assumption for the Continuous Proxy Variable Estimator 
 
Redundancy assumption (11), positing that Prox is redundant in predicting Y given S(1) and Z, 
implies the specific functional form for  [ |      ] that is given in (13).  If this functional 
form is misspecified, then (11) is false.  Therefore, the usual repertoire of statistical methods 
for testing or assessing functional form can be employed to indirectly test or assess (11), and 
these provide an alternative or adjunct to using the specification test.  For example, a model 
comparison test of (13) vs. a model that additionally includes polynomial terms for     , 
examination of residual plots for (13), and using cross-validation to compare (13) to 
alternative regression models with respect to MSE would all be ways to indirectly test or 
assess (11).  A complication here is that      itself is not used to fit (13), but rather a version 
of      generated from a model for  [ ( )| ], and an apparent inadequacy of (13) may in 
fact be due to a misspecified model for  [ ( )| ].  In practice, then, care must be taken in 
specifying and checking the model for  [ ( )| ] before examining possible inadequacies of 
(13). 
 
Assessing the Redundancy Assumption for the Binary Proxy Variable Estimator 
 
The binary proxy variable principal effects estimator can be derived from fitting linear 
regression models (14) and (16) or from direct substitution into (18), and the estimator relies 
on redundancy assumption (19), which posits that BProx is redundant in predicting the 
individual treatment effect given S(1).  However, both (14) and (16) are necessarily correctly 
specified, whether or not (19) holds, and therefore the kind of model-misspecification-based 
assumption testing or checking suitable for the continuous proxy variable estimator is 
unsuitable in the binary proxy variable case.  If X, or some subvector of X, is conditionally 
independent of   given S(1), then any binary variable derived from X (or its subvector) satisfies 
(19): conditional independence of X implies the weaker assumption of the redundancy of X, 
which implies the redundancy of any binary variable derived from X.  In some evaluations, 
there may be good substantive grounds for arguing that a given subvector of X meets the 
conditional independence assumption or redundancy assumption, while in other evaluations 
substantive knowledge may undermine this supposition.  In either circumstance, the 
specification test can be used to assess (19). 
 
The Asymptotic Bias of the Binary Proxy Variable Estimator 
 
As an additional tool for working with the binary proxy variable estimator, we present its 
asymptotic bias.  This bias can be characterized in terms of two parameters,    and   , that 
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are equal to zero if redundancy assumption (19) holds.  Violations of (19) can be specified by 
ascribing nonzero values to at least one of these parameters, and the magnitude of the 
consequent bias can be examined to determine the magnitude of the assumption violation 
needed to change the substantive interpretation of the primary effects estimates.  Thus, the 
asymptotic bias formulas can be used to assess the sensitivity of the principal effects 
estimates to violations of the underlying redundancy assumption. 
 
As a shorthand, let      [ | ( )           ].  Then we can write 
 

           
 
and 
 

           
 
If    and    are both zero, then (19) holds, and otherwise (19) is false; the sizes of    and    
indicate the magnitude of the divergence from (19).  From Peck’s derivation of the binary 
proxy variable estimator, we have 
 

      (      )     (      ) 
 

                 
 
allowing us to solve for     and    .  Additionally, by iterated expectation we obtain 
 

  ( )       (       | ( )   )   
 

  ( )       (       | ( )   )   
 
The binary proxy variable estimators consistently estimate, respectively, 
 

  ( )  
           

       
 

 
and 
 

  ( )  
           

       
 

 
where, under (19), QE(0) = PE(0) and QE(1)=PE(1) but not otherwise.  Then the asymptotic bias 

of   ̂( ) is 
 

  ( )    ( )  
                 

       
  (       | ( )   )   



14 
 

 

and the asymptotic bias of   ̂( ) is 
 

  ( )    ( )   
                 

       
  (       | ( )   )   

 
Since the     and  (       | ( )) can be estimated from the treatment subsample, for 
any specified values of    and    the asymptotic biases of the principal effects estimators can 
be estimated. 
 

Estimating Bounds for the Principal Effects 
 
This section presents an assumption-free method for estimating upper and lower bounds for 
principal effects PE(1) and PE(0).  Note that 
 

 [ | ( )]        ( ) 
 
is a saturated, and hence correctly specified, linear model.  Using a standard linear regression 
result (e.g., Wooldridge, 2010, p. 25), 
 

    
   (   ( ))

   ( ( ))
 

 
and            (20) 
 

    [ ]   [ ( )]        [ ( )]   
 
Here,   ( )     and   ( )       .  All of the terms on the right-hand sides can be 
estimated from sample data except for    (   ( )).  Hence, finding bounds for    (   ( )) 
gives us bounds for the principal effects.  We now describe an approach to finding bounds for 
   (   ( )). 
 
To start, 
 

   (   ( ))     ( ( )  ( ))     ( ( )  ( )) 

 
where the first term on the right-hand side is equal to    (   |   ) and hence can be 
estimated.  For the second term on the right-hand side, we have the inequality 
 

   ( ( ))  ( ( ))     ( ( )  ( ))    ( ( ))  ( ( )) 

 
implying that 
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   (   |   )    ( |   )  ( |   )     (   ( ))

    (   |   )    ( |   )  ( |   ) 
 
The upper and lower bounds can thus be estimated from the sample data.  These estimated 
bounds can be applied to (20) to obtain estimated upper and lower bounds for the principal 
effects. 
 

Discussion 
 
AIR and Peck, as well as principal effect estimation utilizing weights derived from principal 
scores (e.g., Jo & Stuart, 2009), are frequentist methods that rely on differing identifying 
assumptions, and the specification test presented above can be employed to test those 
assumptions.  We conclude by noting that Bayesian methods can be employed when the 
principal effects are not identified by the observed data.  Rubin (2005, pp. 326-327) provides a 
concise description of Bayesian methods for causal inference, and Taylor and Zhou (2009) is an 
example of using multiple imputation for inference about principal effects.  A useful next 
research step involves investigating the relative merits of Bayesian inference for principal 
effects vis-a-vis the frequentist methods of Peck and others. 
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Appendix 
 
We present the large-sample distribution of the binary proxy variable estimator of PE(1), 

denoted   ̂( ), that is given in (18).  Let 
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Then it can be shown that 



17 
 

√ (  ̂( )    ( ))
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Hence, in sufficiently large samples,   ̂( ) is approximately normally distributed with mean 
PE(1) and variance 
 

  
      

             

 
 

 
This corrects the estimator variance reported in Peck (2003, p. 184).  Analogous results hold 
for the binary proxy variable estimator of PE(0).  An important caveat: these results do not 
account for the fact that BProx will typically be a generated regressor.  Therefore, using the 
bootstrap to get standard errors will likely be more accurate than relying on the results above. 
 


