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Abstract 
 
 

A shelter-in-place order (SIPO) is one of the most restrictive non-pharmaceutical 
interventions designed to curb the spread of COVID-19. On March 19, 2020, 
California Governor Gavin Newsom issued the first statewide SIPO in the United 
States. The order closed non-essential businesses and required residents to shelter 
in place for all but essential activities such as grocery shopping, retrieving 
prescriptions from a pharmacy, or caring for relatives.  This study is the first in the 
economics literature to estimate the effect of a statewide SIPO on public health. 
Using daily state-level coronavirus data and a synthetic control research design, we 
find that California’s statewide SIPO reduced COVID-19 cases by 160.9 to 194.7 
per 100,000 population by April 20, one month following the order.  We further 
find that California’s SIPO led to as many as 1,566 fewer COVID-19 deaths during 
this period. Back-of-the-envelope calculations suggest that there were about 649 to 
703 job losses per life saved, and about 14 to16 job losses per case averted during 
this post-treatment period. 

  



2 
 
 

 
 
1. MOTIVATION 
 
 

"I simply do not know if our aggressive actions early on ... have had the intended 

effect … I certainly am hoping and praying that that is the case. We still need the 

data to confirm that.”  

- Grant Colfax, San Francisco Director of Public Health, March 31, 2020 

 
 

The 2020 U.S. coronavirus outbreak is one of the most serious public health challenges in 

American history.  In the peak year of the polio epidemic (1952), 367 out of every million 

Americans contracted polio (Ochmann and Roser 2020).  In the first 7 months of 2020, 462 out 

of every million Americans died from COVID-19.   

In contrast to other nations, much of the authority used to combat public health threats in 

the United States rests not with the Federal government, but with state and local officials.  The 

primary state and local policy strategy to prevent the spread of coronavirus during the early 

months of the pandemic was the enactment of shelter-in-place orders (SIPOs), sometimes called 

“stay at home” orders.  SIPOs require residents to shelter in place for all but essential activities 

such as grocery shopping, retrieving prescriptions from a pharmacy, caring for relatives, or 

traveling to employment in sectors deemed essential.1   

A SIPO is one of the most restrictive non-pharmaceutical interventions (NPIs) as it places 

strong limits on both individual and firm choice.  Early studies in the U.S. have demonstrated 

that SIPOs increase social distancing behavior (as measured by cellphone mobility data), and 

generally find them to be more effective than other NPIs (Abouk and Heydari 2020; Cronin and 

 
1 For a deeper discussion of the composition of the “essential” workforce, see Blau, Koebe, and Meyerhofer (2020). 
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Evans 2020; Dave et al. 2020a,b; Goolsbee and Syverson 2020; Gupta et al. 2020; Sears et al. 

2020).2 

This study is the first in the economics literature to explore the impact of a SIPO on 

public health.  We focus on the state of California, which was at the forefront of SIPO adoption 

as the COVID-19 crisis unfolded in a number of urban centers in the United States.  On March 

17 and 18, 2020, 12 California counties and the City of Berkeley adopted SIPOs.3  Then, on the 

evening of March 19, Governor Gavin Newsom issued the first statewide SIPO, which ordered 

the closing of all non-essential businesses in the state and required all California residents to 

shelter in place for all but essential activities.4   

In issuing the SIPO, Governor Newsom implored residents of California “to meet this 

moment and flatten the curve together” (Romero 2020).  Thus, an important policy rationale was 

not simply to curb the pandemic’s growth in California, but also to delay its peak, allowing the 

state additional time to obtain the necessary ventilators, hospital beds, and medical staff to meet 

the surge in demand for services among those who tested positive (Baker and Fink 2020; 

Greenstone and Nigam 2020; Ranney et al. 2020; Tsai et al. 2020; Hicks and Marsh 2020).  

 
2 This literature also documents a large increase in social distancing behavior in general for both SIPO and non-
SIPO adopting locations, presumably due to information spread about the dangers of COVID-19 and associated 
changes in individual and firm behavior to adjust to the new risk environment. 
3 On March 16, Los Angeles Mayor Eric Garcetti implemented a non-essential business closure order. The seven 
counties that adopted a SIPO on March 17 were: Alameda, Contra Costa, Mendocino, San Francisco, San Mateo, 
Santa Clara, and Santa Cruz. The five counties that adopted a SIPO on March 18 were:  Monterey, San Benito, 
Solano, Sonoma, and Ventura. 
4 While grocery stores, pharmacies, restaurants providing takeout or delivery service, and other essential businesses 
were permitted to remain open, most other non-essential businesses were ordered closed.  California’s statewide 
SIPO was soon followed by the closing of many public parks or beaches, driven in part by public outrage over the 
surge in beach parties and picnics immediately following the executive order (Kopetman 2020).  In addition, 
residents were advised to continue to maintain a six-foot distance with non-household members with whom they 
come in contact and public gatherings of non-household members were strongly discouraged.  Violations of the 
SIPO were subject to a $1,000 fine and up to 6 months of imprisonment (Allday 2020), though enforcement most 
often occurred through social pressure and warnings for first offenses.      
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Following the adoption of California’s SIPO, 39 additional states and the District of Columbia 

enacted similar statewide SIPOs between March 20, 2020 and April 20, 2020.  

There are a number of reasons to single out California to study the effects of SIPOs on 

COVID-19 infection and mortality.  First, California’s SIPO was enacted early relative to the 

spread of COVID-19 in the state.  No other SIPO-implementing state in the upper quartile of the 

urbanicity distribution had an average daily coronavirus growth rate lower than California during 

this period (19 percent).5  Thus, California serves as a “best case scenario” or reasonable upper 

bound for the benefits of early intervention.  California may also provide a cleaner natural 

experiment in relation to later adopters, where policy adoption was more closely related to 

accelerating case growth. 

Second, from an analytic perspective, California’s position as the earliest mover in the 

U.S. is advantageous for the purpose of constructing a suitable counterfactual.  We are able to 

draw from the largest possible pool of untreated donor states, limiting the potential for a poorly 

matched control group, and eliminating the potential for geographic policy spillovers into 

California from previously treated states. 

California also has a number of features that make it an interesting case study. California 

ranks second out of 51 states (including the District of Columbia) in percent living in urbanized 

areas and urban clusters and eighth out of 51 states in population-weighted density.6  The spread 

of coronavirus is exacerbated by increased population density, which generates greater 

opportunities for transmission among frequently interacting individuals (Centers for Disease 

 
5 As a comparison, New York, which had the highest per-capita case rate in the nation throughout much of the early 
outbreak, had an average daily coronavirus case growth rate of 40 percent in the four days prior to its enactment of a 
SIPO.   
6 In 2019, 95.0 percent of California residents lived in an urbanized area or urban cluster (Iowa Community 
Indicators Program 2020).  The population-weighted density (population density counting only where people live) 
was 1,851.1 persons per square mile (calculated by the authors). 
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Control and Prevention 2020).  Our findings, therefore, are most appropriately generalized to 

other highly urbanized states which are the places where COVID-19 (and other similarly 

transmitted diseases of the future) have the greatest potential to spread rapidly if left unchecked. 

Following the release of Friedson et al. (2020), a fast-moving, emerging literature has 

studied short-run health effects of the “average” SIPO using location-by-day panel data and an 

event-study framework (Courtemanche et al. 2020; Dave et al. 2020a, b; Sears et al. 2020).  

Descriptive evidence points to health benefits of SIPOs as well as potentially important 

heterogeneity in policy impacts across adoption time and population density (Dave et al. 2020a, 

b).  This finding, coupled with the insight that state SIPOs enacted early in the COVID-19 

outbreak cycle are likely more plausibly exogenous than those enacted in response to 

accelerating COVID-19 case growth, underscores the importance of studying the California 

experience. 

Using 40 days of state-level data on confirmed COVID-19 cases and mortality, we 

explore the early public health effects of California’s first-in-the-nation statewide SIPO.  

Estimates from our preferred synthetic control models show that California’s SIPO led to a 160.9 

to 194.7 per 100,000 population reduction in COVID-19 cases by April 20, 2020, approximately 

one month following the SIPO’s enactment. We also find a 3.6 to 3.9 per 100,000 population 

reduction in COVID-19-related deaths in the same time frame, although these estimates are not 

statistically significant at conventional levels across all methods.  These findings are robust to 

the selection of observables (i.e. pre-treatment COVID-19 rates, population density, urbanicity, 

and other COVID-related policies) to generate the weights to construct our counterfactual.  We 

find that the number of cases averted and lives saved were much larger in the second and third 

weeks following the SIPO’s adoption, consistent with growing public health benefits over the 
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period during which the outbreak was exponentially growing.  Back-of-the-envelope calculations 

suggest that there were approximately 14 to 16 job losses per coronavirus case averted and 649 

to 703 job losses per life saved during this short-run post-SIPO window in California. 

 

2. DATA AND METHODS 

2.1 Data 

In order to examine the “first stage” compliance with the California SIPO, we utilize 

publicly available data from SafeGraph Inc.7  For each state (and county) on each day SafeGraph 

provides a shelter-in-place index, based on the percent of individuals staying at home during the 

day.  The metric is constructed from spatial data generated using anonymous cell phone pings.  

First, each cell phone is assigned a “home” (or 153m by 153m square) based on a common 

nighttime location over a baseline period.8  SafeGraph then calculates the percent staying at 

home, i.e.  the fraction of cell phones in a geographic unit (state, county, etc.) that do not leave 

the “home” for any given day.9  The shelter-in-place index is the percentage point change in the 

number of cell phones staying at home relative to the baseline of February 6, 2020 through 

February 12, 2020.10  

 
7 Data and detailed descriptions of variable construction are available at: 
https://www.safegraph.com/dashboard/covid19-shelter-in-place 
8 We note certain inherent limitations with such measures. For instance, it does not capture whether an individual 
engages in social distancing while outside their home or if someone works at night.  Furthermore, the definition of a 
“home” (a common location, within 153m by 153m square, that receives the most frequent GPS pings during the 
overnight hours of 6pm to 7am over a six-week period) does not adjust for differences between urban vs. suburban 
dwellings.  Nevertheless, it is plausible to expect that having a higher fraction of the population “fully” sheltering in 
place would be positively correlated with rates of social distancing.  Further, given that our focus is on changes 
within states over time, any measurement error introduced in these measures cross-spatially will not affect our 
results.   
9 SafeGraph makes adjustments for small geographic units which are not relevant for a state-level analysis. 
10 So, a value of 25 for the shelter in place index could represent an increase from 12 percent of phones staying at 
home at baseline to 37 percent of phones staying at home (37-12=25). 
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To examine the short-run public health effects of the statewide order, we utilize a panel 

of state-specific daily counts of COVID-19 cases and death reports from March 12, 2020 through 

April 20, 2020.  These data are curated by The New York Times based on reports from state and 

local health agencies.11  As of April 20, 2020, there were a total of 778,328 confirmed COVID-

19 cases in the United States, 4.3 percent (33,862) of which were in California, and 37,372 

coronavirus-related deaths, 3.2 percent (1,223) of which were in California.  

Appendix Figure 1 (Panel a) shows state-specific trends in cumulative coronavirus rates 

per 100,000 population in each state.  Daily cases can be calculated as the slope of this 

cumulative case distribution.  Over the period under study, the average coronavirus case rate in 

California was 30.8 per 100,000 population, and its growth rate from March 12 to April 20 was 

the sixth lowest among the 50 states and the District of Columbia.  In addition, California had the 

lowest case growth rate among the top 25th percentile of the most highly urbanized states, 

California also had the lowest case rate among the top 25th percentile of the most densely 

populated states.  Panel (b) shows the trends in cumulative coronavirus-related death rates per 

100,000 population. Between March 12 and April 20, 2020, the COVID-19 death rate in the 

United States grew by 8.6 deaths per 100,000 population, while it grew by less than one half as 

much (3.1 per 100,000 population) in California. New York, New Jersey, Washington, 

Louisiana, and Massachusetts had among the highest rates of coronavirus-related deaths at the 

end of the sample period.  In terms of mortality, the growth in the COVID-19 death rate in 

California ranked lowest among the top 25th percentile of the most highly urbanized states. 

 

 
11 See data available here: https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html.  The date for a 
particular case or death is the day that the case was reported by state public health authorities.   
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2.2 Synthetic Control Design 

We use the synthetic control method introduced by Abadie, Diamond and Hainmueller 

(2010) to infer the causal impact of a SIPO on the number of confirmed coronavirus cases and 

the number of COVID-19-related deaths per 100,000 population in California. This method 

relies on data from pre-treatment COVID-19 case (or mortality) rates and observable 

characteristics of states that may influence the spread of the virus (i.e. timing of community 

spread, pre-treatment social distancing, COVID-19 testing, population-weighted density, 

urbanicity, emergency decrees for a major disaster area, travel restrictions and school closures).12  

The synthetic control approach generates a counterfactual designed to capture how coronavirus 

cases would have evolved in California in the absence of its SIPO.   

Our chief outcomes of interest, !"#$	&"'$() and *$"'ℎ	&"'$(), measure the cumulative 

number of confirmed coronavirus cases and the number of coronavirus-related deaths per 

100,000 population in state i at day t.  We estimate the unobserved counterfactual (“synthetic 

California”) as a weighted linear combination of states included in a donor pool.  The weights 

are chosen so as to generate a synthetic state that is as similar as possible to California on key 

 
12 Population-weighted density captures the density where the average person lives and is computed by combining 
population density at the census block group (CBG) level weighted by the population of each CBG (see: 
https://www.census.gov/programs-surveys/metro-micro/data/tools/metro-micro-help/variables.html and 
https://www.census.gov/geographies.html).  Urbanicity is measured as percentage of total population living in urban 
areas and is available from Iowa Community Indicators Program (see: 
https://www.icip.iastate.edu/tables/population/urban-pct-states).  Emergency major disaster declarations are 
measured as a state with a disaster that exceeds the response capabilities of the state and local governments, and 
long-term recovery assistance is needed and are available from the Federal Emergency Management Agency (see: 
https://www.fema.gov/disasters).  Travel restrictions are measured as states that restrict residents from traveling to 
other states and/or states that restrict residents of other states from entering the state. COVID-19 tests are measured 
as the natural log of total coronavirus tests reported by each state.  These data are available from COVID Tracking 
Project (see: https://covidtracking.com).  School closures are measured for states that ordered schools to close for 
the remainder of the 2019-2020 academic year; we obtain this information and the relevant dates from 
Courtemanche et al. (2020).  California did not implement a travel ban; an emergency disaster declaration was 
issued in the state on March 22, 2020, and school closings were mandated starting on March 19, 2020. California 
issued its emergency declaration by about 9 days prior to the average state, and ordered school closings by about 1 
day prior to the average state. Over the sample period, 16 states imposed travel restrictions, and all states issued an 
emergency declaration and mandated school closings. 
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observables.  Given the importance of the selection (i) of states to be included in the donor pool, 

and (ii) observable characteristics on which to closely match California to its synthetic 

counterpart, it is incumbent on researchers to offer a theoretical defense of these choices and to 

explore the sensitivity of estimated policy impacts to these choices (Ferman, Pinto, and 

Possebaum 2020).   

We begin our analyses with a donor pool comprised of 42 states and the District of 

Columbia: 10 states that had never enacted a SIPO during our sample period, and 32 states and 

the District of Columbia that adopted a SIPO at least 5 days after California did so.  We select 

this five-day period because it is the median incubation period of COVID-19 (Lauer et al. 2020), 

and thus gives the case data from California sufficient time to reflect underlying changes in the 

transmission rate before any of the donor states implement their own SIPOs.13  One limitation is 

that by including later-adopting SIPO states as potential donors, the synthetic control is 

contaminated on some post-treatment days.  Thus, to the extent that later enacted SIPOs have 

taken effect, our estimated treatment effects can be construed as lower-bound estimates of the 

effect of the California SIPO.14   

As California is more urbanized and densely populated than most other states, our 

preferred donor pool is further selected to exclude the least urban and least dense states (bottom 

quintile of states).  We initially match on each of seven (7) days (March 12-18) of pre-treatment 

confirmed COVID-19 case rates per 100,000 population, which effectively requires case growth 

 
13 This decision rule eliminates the following states from our donor pool: Illinois, New Jersey, New York, 
Connecticut, Louisiana, Oregon, and Washington.  Several of these states (in particular New Jersey and New York) 
appeared to be on very different pre-treatment case and mortality trends than the majority of states, including 
California (See Appendix Figure 1). We also re-estimate our synthetic control models without eliminating pre-
March 24 SIPO-adopters from the donor pool, with a pattern of results that is unchanged. 
14 As one approach to address this concern, we select an alternate donor pool that includes states that had never 
adopted a SIPO or had adopted a SIPO but had 4 or fewer days of post-treatment data.  The pattern of results 
remains similar.    
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rates to be identical.  We estimate the unobserved counterfactual COVID-19 case rate for 

California on pre-treatment day ' by ∑ -. ∗. !"#$	&"'$.), where -.  is the weight assigned to 

donor state 0.  The analogous counterfactual death rate is  ∑ -. ∗. *$"'ℎ	&"'$.). The estimated 

weights -.  are chosen to minimize the absolute difference between !"#$	&"'$(123,) and 

∑ -. ∗. !"#$	&"'$.) and for all pre-treatment days, as well as the absolute difference 

between	*$"'ℎ	&"'$(123,) and ∑ -. ∗. *$"'ℎ	&"'$.).  Then, the per-day treatment effect αt is 

estimated as 5) = 7(123,) − ∑ -. ∗ 7.).  for t ∈ r [March 19, April 9], where 7 =

[!"#$	&"'$, *$"'ℎ	&"'$]. The average treatment effect is then the average over the post-

treatment window. 

While choosing a counterfactual based only on pre-treatment outcomes eliminates 

concerns of ‘p-hacking’ via selection of matching variables (Botosaru and Ferman, 2019), this 

approach effectively eliminates the role of factors that may legitimately and strongly influence 

the path of an outbreak such as timing of community spread, pre-treatment social distancing, 

urbanicity, weather, state travel restrictions, school closures, or a declaration of a major 

disaster.15   

In light of this, we also generate our synthetic counterfactual by giving a larger role to the 

covariate predictors and drivers of the outbreak, and match on (i) pre-treatment social distancing 

to ensure that California’s SIPO is not an observable marker for voluntary distancing already 

underway, (ii) state population-weighted density and a state urbanicity index, factors that play an 

important role in the spread of infectious disease across communities due to increased crowding 

(Florida 2020), (iii) other COVID-19 policies (i.e. the number of days that an emergency major 

 
15 As shown by Kaul et.al (2018), matching on all periods of pre-treatment outcomes renders all covariates irrelevant 
in the prediction of the outcome. 
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disaster declaration was in effect for the state, if the state had imposed travel restrictions, and if 

school closures had been in effect), and (iv) COVID-19 testing rates, which may influence the 

number of confirmed cases.16  When matching on these observable characteristics, we also match 

on the outcome variable for two days (March 12 and March 18) over the pre-treatment period.  In 

addition, we explore the robustness of the results to restricting the set of donor states to those that 

had experienced community outbreak in COVID-19, including at least 10, 50, or 100 cases in the 

state. 

With California being the first state in the nation to issue a statewide SIPO at a time when 

the COVID epidemic was still new, cases in the early periods by definition were low.  The scale 

of the difference in the pre-policy periods would also by definition be low compared with latter 

periods as the epidemic was quickly expanding.  Matching on these relatively small values of 

pre-treatment COVID-19 cases may not fully leverage the construction of a valid counterfactual 

and end up minimizing meaningful differences prior to policy adoption relative to post-treatment 

differences.17  We undertake additional analyses to address concerns on this front.  First, in lieu 

of the absolute case (and mortality) rate, we match on the natural log of the outcome.  Relative 

changes, that is changes in the natural log of confirmed cases for instance, may provide better 

counterfactual tracking for infections that are growing at a non-linear exponential rate.18 Second, 

 
16 One reason why we might see changes in cases is because testing resources have changed. As of March 13, only 
15,000 tests had been conducted in the U.S.  To address the initial low testing rate in the U.S., the Food and Drug 
Administration approved a new COVID-19 test from the pharmaceutical company Roche (Arnold 2020). In the 
following days, states including Delaware, New York, Massachusetts and Texas, began implementing drive-up 
testing sites, which made access to testing more available (Yancey-Bragg 2020). Despite these improvements in 
accessibility, many testing delays persisted due to laboratory capacity constraints (Brown and Court 2020).  
Coronavirus-related deaths are less likely to be affected by this selection into testing.   
17 For this reason, we opted not to extend the pre-treatment window beyond 7 days in our main analyses when we 
match on pre-treatment outcomes, which would have otherwise brought in even lower case counts.  Nevertheless, 
our results are robust to extending the analysis further back (see Appendix Figure 2, where we expand the pre-policy 
window to the full two weeks of data predating the SIPO).   
18 The raw number of cases in California is 252 on 3/12, 320 on 3/13, 381 on 3/14, 478 on 3/15, 588 on 3/16, 732 on 
3/17, and 893 on 3/18, which is the time period over which we are matching.  Hence, while we are not in a situation 
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we limit matching on direct measures of the outbreak itself (such as confirmed cases or 

mortality) and allow a larger role in the matching process for factors that may legitimately and 

strongly influence the path of the COVID outbreak and the timing of community spread 

(urbanicity, population-weighted density, testing rates, travel restrictions, emergency 

declarations, school closures, stay-at-home behaviors).  Third, we generate a counterfactual for 

California by matching on outpatient visits for influenza like illnesses (ILIs), derived from the 

CDC’s influenza surveillance system. Volume of ILIs should be correlated with a large number 

of unobservable characteristics associated with population health and behaviors that are relevant 

to COVID-19.  The general argument is that if a state is a good candidate for ILIs spreading then 

it is likely a good candidate for COVID-19 spreading.  By constructing a counterfactual based on 

ILIs, we are also able to extend the pre-policy window to October of 2019 and match over a 

longer period of time, bypassing the need to rely on any direct COVID-19 related outcomes such 

as cases.19   

A key strength of the synthetic control design is that, by explicitly netting out any 

common trends on social distancing (through matching on pre-treatment stay-at-home 

behaviors), the policy impact we estimate is the effect of the SIPO over and above the effect of 

any voluntary distancing. This is important given that trends in social distancing were positive 

even prior to policy adoption, reflecting expanding awareness or concern regarding COVID-19 

as well as depressed economic activity.  To the extent that the depressed economic activity 

 
where everything in the pre-period is zero, the case rate is of orders of magnitude lower relative to the end of the 
sample period.  However, the rate of growth is exponential with cases roughly doubling over this period every 4-5 
days.  By matching on trends in the natural log of the case rate, we are generating a counterfactual that tracked 
California identically in terms of the growth rate in cases over the early phase of the outbreak.   
19 Specifically, we bring in information on the percent of visits for influenza-like illness (ILI) reported by physicians 
to the U.S. ILI Surveillance Network (ILINet) as part of the CDC’s flu surveillance system (see: 
https://www.cdc.gov/flu/weekly/overview.htm). 
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induced voluntary social distancing, we are identifying the additional effect of a SIPO on top of 

any economic slowdown, or voluntary distancing (either due to the outbreak or due to the 

slowdown).20  We note, however, that the recession can be both a potential confounder as well as 

a mechanism through which the SIPO may be impacting social distancing and stay-at-home 

behaviors (and subsequently the COVID-19 caseload).21    

Finally, for comparison, we also estimate a difference-in-differences model of the 

following form, drawing on the full and limited set of donor states discussed earlier as controls: 

 

ln (Case Rateit) = β0 + β1SIPOit + β2Xit + γs + τt + μit          (1) 

 

In the specification above, SIPOit is an indicator for California having the shelter-in-place order 

in place, Xit is a set of state-level, day-varying controls that include indicators for whether the 

state enacted a statewide non-essential business closure order (that falls short of a shelter-in-

place order), whether the state enacted a targeted shelter-in-place order that covers only older 

individuals over age 65 or those with underlying health conditions, whether the state had enacted 

travel-related restrictions, whether a major disaster declaration had been issued for the state, 

whether the state had mandated school closures for the remainder of the academic year, the 

 
20 In Appendix Figure 3, we plot the SafeGraph shelter-in-place index as well as Google Trends queries for “file for 
unemployment” in California and in the rest of the U.S.  All three of these metrics begin moving well before March 
19th, when California instituted its SIPO.  This is not necessarily an issue for our identification strategy, as we partial 
out any common trends and attempt to isolate the effect of the policy change on the spread of the virus.  
Nevertheless, the Google Trends time series helps to reassure us, because the unemployment patterns appear to be 
very similar between CA and the rest of the country, suggesting that our strategy would be netting them out.  
21 When we treat Google Trends queries for “file for unemployment” (which is a proxy for unemployment filing) as 
an outcome, there is some indication that the statewide SIPO generated some economic costs in the form of job-loss, 
though the effects based on Google queries are noisy and imprecise.  The latter effects are consistent with some 
recent working papers (for instance, Gupta et al. 2020; Baek et al. 2020; Rojas et al. 2020) which find that social 
distancing policies played some (though not a primary or large) role in moderating economic activity and increasing 
job-loss.  We return to this issue in the concluding section. 
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average temperature (in degrees Celsius) at all weather stations in the state, and an indicator for 

whether any weather station in the state reported measurable precipitation.  In addition, we 

control for state fixed effects (γs) and day fixed effects (τt), identifying our treatment effect (β1) 

via within-state variation in the enactment of the SIPO. We also estimate equation (1) where we 

replace Case Rateit with Death Rateit, but given low counts of deaths during the earlier days of 

our analysis period, we alternately utilize Poisson models and inverse-hyperbolic sine 

transformations of the dependent variable.  The difference-in-differences models do not rely on 

the synthetic weights or force any matching in the pre-treatment periods, and thus provide a 

check on the synthetic control estimates.  They also allow us to more explicitly control for the 

timing of the other COVID-19 related policies.  

For statistical inference on all point estimates, we conduct placebo tests following the 

method suggested by Abadie, Diamond and Hainmueller (2010) to generate permutation-based 

p-values. For the synthetic control estimates, we generate and report these p-values based on the 

ratio of the post-treatment to the pre-treatment mean squared prediction error (MSPE).22 

Additionally, for all point estimates we report confidence intervals, representing the 10th and the 

90th percentiles of all treatment effects generated under randomization inference (Imbens and 

Rubin 2015).  

 

 
22 We compare the pre-treatment and post-treatment mean squared prediction error (MSPE) for each donor state 
being reclassified as pseudo-treatment state, calculating the MSPE ratio as follows: 

<=>?	@"'AB. =
∑ (DEFGHIJ)KEF)

MN
FOP/RS

∑ (DEFGHIJ)KEF)
MP/RT

FOP/RM

             

The ranking of the treated states relative to the placebo states then provides a permutation-based p-value. The p-
value relies directly on the number of states in the donor pool. With between 32 and 43 states in the donor pool, 
California’s MSPE ratio must rank at least 1st or 2nd to receive a p-value below 0.05 and at least 3rd or 4th to receive a 
p-value below 0.1.  A p-value of less than 0.01 is not attainable given the number of donor states.  Our inferences 
are not materially affected if p-values are generated based on only the post-treatment MSPE.  The rationale for the 
latter method is that the pre-treatment MSPE is close to zero and insignificant in all cases (reflecting that CA and its 
synthetic control tracked virtually identically over the validation window).   
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3. RESULTS 

Our main findings on the effects of California’s statewide SIPO can be found in Figures 1 

through 3 and Tables 1 through 5.   

 

3.1 “Stay at home” Behavior and California Statewide SIPO 

 Figure 1 presents trends in the shelter-in-place index for both California and its synthetic 

control.  The index reflects the percent of the population in a given state that stays at home all 

day relative to a baseline, derived from anonymized cell phone geotagging.  We assign weights 

to the synthetic control based on close matches in the shelter-in-place index for each of the 7 

days prior to CA’s statewide SIPO.23  Trends in social distancing are expectedly positive over the 

entire analysis period as awareness of COVID-19 was proliferating and the benefits of social 

distancing were emphasized through public health advisories and guidelines.  The synthetically-

generated counterfactual tracks California nearly identically prior to the SIPO, with trends 

markedly diverging only after California issued its statewide order on March 19. Estimates of the 

average daily treatment effect indicate that the percent of individuals remaining at home 

throughout the day increased by 2.1 percentage-points (8.5 percent relative to the baseline mean) 

in California relative to its synthetic control, over the entire post-SIPO period.  The effect is 

larger over the initial post-treatment window up to March 28, indicating a 3.3 percentage-point 

increase in the average daily rate (12 percent increase relative to the baseline mean) at which 

individuals shelter at home in California relative to the synthetic control, and suggestive of a 

rapid run-up in social distancing. Focusing on this window wherein CA experienced the largest 

 
23 As the baseline for the index is the same for all states (week ending February 12, 2020), and the pre-SIPO trends 
are nearly identical, the treatment effect can be interpreted as the increase in the percent of households in CA who 
are staying at home relative to its counterfactual in the post-SIPO period.   
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gains in social distancing, the effect is statistically significant with a one-sided permutation-

based p-value of 0.023.  As more donor states issued their own shelter-in-place orders, notably 

by the end of March, and gains for California decelerated, trends narrowed somewhat between 

California and its synthetic control. 

Analysis of the SafeGraph mobility data underscores three points.  First, it provides 

supporting evidence that individuals in California complied with the shelter-in-place order, and 

that the SIPO effectively and rapidly reduced social mobility in California above and beyond 

voluntary social distancing that was already underway.  Second, the effect of the SIPO in 

increasing stay-at-home behavior in California, relative to its control, was generally sustained 

over the analysis period.24  Third, the health effects that we estimate below capture the direct 

effect of California’s SIPO on contagion by forcing certain forms of economic activity to stop, as 

well as the compounding effects of the SIPO accelerating social distancing behavior during the 

early period of the coronavirus outbreak cycle.  The relationship between mobility and illness 

spread is likely non-linear, particularly when considered over time. 

 

3.2 COVID-19 Confirmed Cases and California Statewide SIPO 

Figure 2 shows trends in confirmed COVID-19 cumulative cases from March 12, 2020 

through April 20, 2020 for California and its synthetic control.25  Case rates in California rose 

fairly linearly over the period from March 12 through March 25 from .6 to 8 per 100,000 

population before beginning more exponential growth, reaching 85.6 per 100,000 on April 20, 

 
24 There is some indication of catch-up in voluntary social distancing by those in control states, perhaps in response 
to widespread SIPO adoption in other states or general proliferation of awareness and concern regarding COVID-19, 
leading to some convergence in rates of staying at home by the end of the sample period. 
25 Appendix Table 1 lists the states receiving positive weights (and their corresponding weights) for the analyses 
underlying Figures 2 and 3. 
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2020.  An important concern in synthetic control analysis is how robust findings are to the choice 

of observable controls and donor states.  Consequently, we present estimates based on various 

matching strategies as discussed above to assess the sensitivity of our findings and to address 

specific empirical issues that arise in the estimation.  

Our first synthetic control (Panel a) assigns weights based on close matches on all 

observed covariates and potential drivers of COVID-19 (stay-at-home behavior, testing rates, 

urbanicity and population-weighted density, and other COVID-19 related policies) in addition to 

matching on the outcome on two days (March 12 and March 18) over the pre-treatment period.26  

The synthetic control is drawn from a donor pool comprising 42 states plus D.C; “treated” states 

which adopted a stay-at-home order within temporal proximity to California are excluded.  This 

estimated synthetic control serves as our counterfactual for coronavirus case trends that would 

have unfolded in California in the absence of the SIPO enactment.  As shown in Panel (a), 

despite not forcing matches on the outcome across all pre-treatment days, COVID-19 case rate 

trends in California and synthetic California are virtually identical in the pre-March 19 period.  

During the first five days following treatment, which capture the coronavirus incubation period, 

coronavirus case rates remain quite similar in California and the synthetic control state.  

 
26 Based on the V matrix (Abadie, Diamond and Hainmueller, 2010), the most important predictors (other than the 
pre-treatment outcomes), from among these covariates, in generating the weights and the counterfactual are testing 
rates, disaster declarations, and stay-at-home behavior for the model presented in Panel (a), with the broader donor 
pool, and population-weighted density, urbanicity, and school closure for the model presented in Panel (b), with the 
limited donor pool.  In supplementary analyses (available upon request), we generated the synthetic control by 
matching on the outcome on two days over the pre-treatment window and alternately matching on each of the 
covariates in turn, in order to gauge the quality of the match and the relative importance of each of the covariates in 
driving the match quality.  The average treatment effect over the post-policy window ranges from -34.8 (matching 
on the two pre-treatment outcomes plus the travel restriction policy) to -78.1 (matching on the two pre-treatment 
outcomes plus stay-at-home behavior).  In order to minimize reliance on low case counts in the matching strategy, 
we alternately matched on all of the covariate drivers of community spread of COVID-19 (urbanicity, population-
weighted density, testing rates, travel restrictions, emergency declarations, school closings, and stay-at-home 
behaviors) and limited the amount of matching on pre-period outcomes to just the two days directly preceding the 
treatment.  This yields a largely similar estimate of the policy impact as reported in Tables 1 and 2, on the order of a 
decline in the cumulative case rate of 74.7 cases (per 100,000 population) on average over the post-treatment period. 
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However, beginning on March 25 and accelerating soon thereafter, the rate of growth in 

California’s coronavirus cases was substantially lower relative to the synthetic control.   

In column (1) of Table 1, we show corresponding point estimates of the average 

treatment effect realized over the full post-SIPO period from March 19 through April 20 (Panel 

I), for the post-treatment period beginning March 23, which accounts for the median coronavirus 

incubation period (Panel II), and for the post-SIPO period beginning March 30, the 97th 

percentile of the coronavirus incubation period (Panel III).  For the full post-treatment period, we 

estimate that the enactment of the SIPO is associated with a significant 54.2 decline in average 

coronavirus cases per 100,000 population.  The daily decline in coronavirus cases is not constant 

over the post-treatment window.  The estimated public health benefits accelerate in the days 

following enactment, consistent with an exponential growth in contagion that was averted from 

the SIPO’s enactment.  Following March 22, the enactment of the SIPO led to a 61.5 decline in 

average coronavirus cases per 100,000 population while in the post-March 30 period, the average 

cumulative case reduction that we attribute to California’s SIPO is 78.7 per 100,000 population.  

This pattern of findings suggests that the public health benefits of the SIPO grew over the near-

month long period of analysis.  These public health benefits also capture any potential 

compounding effects due to California responding early during the initial phase of its outbreak 

cycle.27  By the final day of case data in our analysis (April 20), we find that there were 160.94 

fewer coronavirus cases per 100,000 population,28 which translates to 63,663 total cases averted 

over the one month following the shelter-in-place mandate.   

 
27 If we employ the synthetic weights from the models in Table 1 to compute a weighted average date of SIPO 
enactment among the states in the control group and assign never adopters a pseudo-treatment date that is one day 
after the end of the analysis period, then, using this measure, California issued its SIPO on average 13 days prior to 
synthetic California. 
28 This estimate visually corresponds to the gap between California and synthetic California on April 20 in Figure 2 
(Panel a).  With a population base of 39.5 million, the averted decline in the case rate (160.94) by the end of the 
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In Panel (b) of Figure 2, we utilize a more limited donor pool, further excluding the least 

urban and least dense states (bottom quintile), in order to safeguard from California’s synthetic 

control drawing on any states that are ex ante not comparable.  Corresponding point estimates, 

which are presented in the second column in Table 1, indicate slightly larger reductions in 

confirmed cases.  Over the full post-treatment period, the California SIPO led to a 62.9 per 

100,000 population decline in average cumulative coronavirus cases.  With 32 states forming the 

potential donor pool, the estimated effect for California ranks first among all of the placebo 

checks, making it statistically significant (p-value = 0.03).29  By the end of the sample period, the 

cumulative number of coronavirus cases averted was approximately 76,997.30 

Models (1) and (2) permit a larger role for covariates and predictors of COVID-19 in the 

matching process and limited matching on direct outcome measures of the spread.  The final 

panel in Figure 2 (estimates in column 3 of Table 1) alternately assigns weights based on close 

matches in pre-SIPO case rates on each of the 7 pre-treatment days, thereby rendering the 

covariates irrelevant in the matching.  The estimated treatment effect remains largely similar, 

indicating a decline in average cumulative cases of 58.9 (per 100,000 population) in California 

relative to its control over the post-policy period.31 

 
sample period converts into 63,663 fewer total cases as a result of the SIPO.  To take a more conservative approach, 
we also consider an alternate strategy where we force coronavirus cases during the period from March 19 through 
March 23 to be comparable to the donor states.  This imposes a null effect of the SIPO on cases due to lagged effect 
from exposure to symptoms during the incubation period.  This exercise yields similar results as our main model. 
29 One-sided p-values generated on only the post-treatment MSPE are somewhat larger, though most of the estimates 
remain statistically significant based on these p-values.  The p-values are 0.068 for the point estimates in column (1), 
0.091 for the point estimates in column (2), and 0.152 for those in column (3). 
30 It is important to recall that each of the above estimates is based on a synthetic control from a set of donor states 
that are partially treated in the latter part of the post-period, and as such are a lower bound for the true effect of the 
policy.   In Appendix Table 2, we examine the sensitivity of estimated policy impacts to the use of never-adopting or 
later-adopting (after April 5) states as controls. We find that California’s statewide SIPO reduced average 
cumulative case rates by about 183 cases per 100,000 relative to synthetic California.  These results are expectedly 
somewhat larger in magnitude, but also less precise than the estimates when we allow partially treated states in the 
control group. 
31 In Appendix Table 3 we further implemented the various matching choices recommended in Ferman, Pinto, and 
Possebaum (2020), including: (i) matching on first ¾ of pre-treatment outcomes; (ii) matching on the first ½ of pre-
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It is possible that our donor states may be too different from California in experiencing 

community spread of the coronavirus prior to policy implementation.  Different states 

experienced coronavirus outbreak at different times.  In the pre-treatment period, California had 

experienced nearly 252 cases of COVID-19 on March 12, which suggests that outbreak and 

community spread was underway.  To ensure that the donor pool for synthetic California had 

also experienced community spread, we limit our donor pool to states that had experienced at 

least 10 (column 1), 50 (column 2), or 100 cases (column 3) of coronavirus in Appendix Table 4 

(the full synthetic control results are also plotted in Appendix Figure 4).  The results continue to 

show strong evidence that California’s SIPO was associated with a reduction in COVID-19 

cases.   

One concern with generating a counterfactual, during a validation period when the 

epidemic is still new but expanding rapidly, is that we are necessarily matching on low values of 

the outcome.  These pre-policy case rates, and any differences between the treatment and control, 

are expectedly on a different order of magnitude than the levels and differences towards the end 

of our analysis period; the estimated treatment effect then will largely reflect the post-treatment 

difference between California and its counterfactual.32  Hence, it is paramount that the 

counterfactual be credible and track California on observed and unobserved drivers of the 

transmission of COVID-19.   

 
treatment outcomes; (iii) matching on odd pre-treatment outcome periods; (iv) matching on even pre-treatment 
outcome periods; (v) matching on the pre-treatment outcome mean; and (vi) matching on three pre-treatment 
outcome values: first, middle, and last periods.  It is validating that our effects are not sensitive to which functions of 
the pre-treatment periods are included in the matching choice; the average treatment effect over the post-policy 
period ranges from -42.0 to -63.5. 
32 In other words, the role typically played by the pre-treatment difference between the treated and control units in 
netting out unobservables across these units will be largely moot because this difference is so small relative to the 
post-treatment difference.   
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We take a number of tacks to address this issue.  In Table 2 (columns 1-3), we replicate 

our main analyses (from Table 1), but in lieu of matching on the low case counts, we match on 

their natural logarithm.  Even if the early case counts were relatively small, they were growing 

exponentially.  And, by balancing on the trend in the log of the case rate, we generate a synthetic 

control that tracks California in terms of the exponential rate of growth in cases over the early 

phase of the outbreak (Appendix Figure 5).  The results confirm previous findings and patterns.  

California’s statewide SIPO is predicted to have reduced its cumulative cases on average by 

between 54.1 to 65.9 percent, relative to the control group, with this effect becoming 

progressively stronger over time.33   

Next, we generate estimates of the policy impact where we match only on the drivers of 

the community spread, and do not rely on any direct matching on the pre-treatment outcomes 

themselves.  Specifically, in columns 4-7 we match on outpatient visits for influenza-like 

illnesses (ILI), derived from the CDC’s flu surveillance system, in addition to matching on the 

other observed covariates.  By matching on flu-like illnesses, a proxy for state factors that 

promote transmission of infectious respiratory diseases such as COVID-19, we are also able to 

extend the pre-SIPO window back to October of 2019.  Columns (4) and (5) of Table 2 utilize 

the broader donor pool, alternately matching on the mean of the ILI outpatient visits over the 

pre-treatment window vs. matching on these visits for every week over this window;34 the final 

two columns report parallel estimates for the limited donor pool that excludes the least urban and 

dense states. Two points are worthy of note.  First, despite not forcing matches on the outcome 

across any of the pre-treatment periods, California and its synthetic control trend virtually 

 
33 Given that the outcome is the natural log of the caseload, the percent change implied by UVW from an estimation of 
model 1 is [$XRY − 1] ∗ 100 = 	 [$G\.^^_ − 1] ∗ 100 = 	−54.1	percent. 
34 ILI outpatient visits are available from the CDC ILI Network at the weekly level. 
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identically with respect to confirmed cases prior to SIPO adoption (Appendix Figures 6A and 

6B).35 Second, the magnitude of the policy effect across these models remains very similar to 

those discussed earlier.  That the estimated effects remain consistent across alternate donor 

pools, matching algorithms, and variation in the donors and weights used to form the 

counterfactual set instills a degree of confidence to our results. 

While we match on the average testing rate over the sample period in all models, to 

further ensure that coronavirus testing is not biasing estimates of the effect of California’s SIPO 

on confirmed cases, we alternately select weights for donor states by also matching on the 

average rate of testing separately over each week of the analysis period, spanning both the pre-

treatment and post-treatment windows (see Appendix Figure 7).  After forcing testing rates to be 

similar between California and its synthetic control throughout the sample timeframe, we 

continue to find that the California SIPO led to an average reduction of 52.5 COVID-19 cases 

per 100,000 population.  By April 20, we estimate 57,484 COVID-19 cases averted.36 

Table 3 presents standard difference-in-differences estimates of the effect of California’s 

SIPO on confirmed COVID-19 cases (columns 1 and 2) and the natural log of confirmed cases 

(columns 3 and 4), based on equation (1).  We present estimates capitalizing on both the broader 

 
35 The pre-treatment window extends to October 2019; the figures are truncated since COVID-19 case counts were 
low in early March, and zero prior to that.  It is validating that a counterfactual derived from ILI visits over a longer 
lookback period tracked California so well with respect to the increase in COVID cases. 
36 In Appendix Figure 8 and Appendix Table 5, we also directly assess whether the statewide SIPO is associated 
with reduced testing in California relative to its counterfactual.  There is some indication that testing for the 
coronavirus may have increased in the short-term following the SIPO, suggesting that estimated case reductions may 
be biased toward zero during this period, though, after about two weeks following CA’s SIPO, testing rates in the 
control group increased more rapidly relative to CA.  None of the point estimates (Appendix Table 5) are 
statistically distinguishable from zero. We note that testing may also be a potential mechanism as well; SIPOs may 
affect testing because infected individuals who are unaware of their infection may choose to stay at home rather than 
seek out testing or other medical care, possibly because of fears of contagion at medical facilities or because of a 
desire to adhere to a “civic duty” to shelter in place. Nevertheless, that we continue to find significant declines in the 
case rate in California (Appendix Figure 7), even after matching on testing rates over the full analysis period, 
suggests that the treatment effect is not driven by differential testing rates. 
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donor pool (columns 1 and 3) and the limited donor pool (columns 2 and 4) as alternate controls.  

Our findings provide consistent evidence that the California SIPO had substantial negative 

effects on coronavirus cases.  Panel I presents the average treatment effect over the post-policy 

period, reflecting about a 64.3 to 66.1 percent decline in the coronavirus case rate (based on the 

log models) or about a reduction of 60.7 cases per 100,000 population (based on model 1).  

Consistent with the synthetic control estimates, we find that the effectiveness of the SIPO 

grows larger following the virus’s incubation period and the period from time until first symptom 

until respiratory failure.  This is reflected in Panel II, where we decompose the average treatment 

effect based on the approximate interquartile range of the incubation window following 

enactment of the SIPO.37 

Together, the findings in Tables 1 through 3 provide compelling evidence that 

California’s first-in-the-nation SIPO generated important public health benefits in preventing the 

spread of the coronavirus during the first three weeks of enactment.38  Next, we explore whether 

these case declines generated improvements in mortality rates. 

 
37 As a robustness check and to more aggressively adjust for selection on observables, we also implemented a 
propensity score-weighted difference-in-differences, assigning larger weights to control states that are ex ante 
similar to California at baseline.  The predicted propensity score for each of the control states, based on a probit 
model, is a function of the outcome (confirmed COVID case rate or death rate) and all observable covariates over 
the pre-treatment period.  We then estimate the difference-in-differences models, giving CA a weight of one and 
each donor state the inverse probability treatment weight of (1 / (1 – propensity)) (Thoemmes and Ong 2016).  
Alternately, we applied normalized weights, wherein each control state is given a weight that is proportional to the 
probability of their being similar to California (propensity score) relative to the probability of their being a control 
state (# of control states / 1 + # of control states)) (Stuart et al. 2014).  We find similar point estimates of the policy 
impact (63.4 to 66.7 percent decline in cumulative cases on average over the post-policy window), though the 
effects are imprecisely estimated (p-value of 0.132 – 0.154, based on randomization inference).  When we 
decompose the average treatment effect into policy lags, we find a similar pattern of results as in the synthetic 
control and conventional difference-in-differences models, with effects becoming progressively larger with the 
length of time from the adoption of the policy. See Appendix Table 6. 
38 In Appendix Figure 9, we show synthetic control results when we use daily case rates rather than cumulative case 
rates.  This isolates a different local average treatment effect; that is, the effect of a SIPO on the rate of change in the 
change in cumulative coronavirus cases.  Furthermore, this exercise explicitly matches on the daily growth in 
COVID-19 cases in all of the pre-SIPO periods.  By doing so, we are also implicitly matching on the second 
derivative of the cumulative case rate function, which is the growth in the daily change or the acceleration in the 
growth in daily case rates.  Daily case rate data are noisier, but the results continue to provide evidence that 
California’s SIPO reduced coronavirus-related infections. 
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3.3 COVID-19 Deaths and California Statewide SIPO 

 In Figure 3, we show estimates of the effect of California’s SIPO on coronavirus-related 

mortality.  The figure shows the exponential rise in cumulative COVID-19-related deaths in 

California, from 0.01 per 100,000 population (4 deaths) on March 12 to 3.09 per 100,000 

population (1,223 deaths) on April 20.  Each of the three panels parallels our three main 

matching strategies for confirmed cases (from Table 1).  In Panel (a), when we generate a 

synthetic control based on the broader donor pool, matching on all observed covariates in 

conjunction with matching on the mortality rate on two days from the pre-treatment validation 

window, we find strong evidence of a pre-March 19 common trend for California and synthetic 

California.  On March 25, 6 days following enactment of the SIPO, we find that the rate of 

increase in mortality begins falling in California as compared to the estimated counterfactual, 

with a gap that widens exponentially over time, getting particularly large nearly two weeks after 

the policy’s adoption on March 31, 2020.   

This longer lagged effect on mortality relative to cases is to be expected given the 

incubation period from exposure to symptoms and time from first symptoms to acute respiratory 

distress syndrome (ARDS), the latter of which may take up to 8 days (Wang et al. 2020).  We 

note that there are channels through which mortality may be affected by SIPOs that are not 

directly affected by exposure to contagious infected patients.  For instance, SIPOs may affect the 

likelihood that previously infected patients seek medical care due to beliefs about contagion at 

medical facilities.  SIPOs may also impact the availability of resources for medical care, 

including testing, as public resources are used to enforce SIPOs. 
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The remaining panels in Figure 3 visually show the estimated effect of California’s SIPO 

when we restrict the donor pool, further excluding the least urbanized and dense states (Panel b), 

and shift the matching from covariates to matching on all pre-treatment outcomes (Panel c).  

Corresponding point estimates with permutation-based inferential statistics are reported in Table 

4.  Column (2) shows that California’s SIPO led to an average decline in the coronavirus death 

rate of approximately 1.4 per 100,000.  By April 20, there were 1,566 fewer COVID-19 deaths.  

Combined with the estimated case effect shown in column (1) of Table 4, our estimated mortality 

effect implies a coronavirus-related mortality rate of 2.2 percent, somewhat high, but within the 

range of mortality estimates suggested by the WHO and CDC (World Health Organization 2020; 

Wilson et al. 2020).  Of course, there are a number of caveats to this back-of-the-envelope 

assessment to judge the credibility of our estimates.  First, deaths occur with a lag with respect to 

confirmed cases.  Second, during the earlier stages of the outbreak, there is evidence that state 

medical resource constraints permitted testing of only those with more severe symptoms and a 

higher probability of succumbing to their illness (Baker and Fink 2020). Third, this implied 

mortality rate is based on the margin of cases averted due to the SIPO, which may be different 

than the average infected case.39 

While our estimated mortality decline is substantial in magnitude, permutation-based p-

values are insufficiently small to conclude definitively that there was a decline in COVID-19 

deaths due to California’s SIPO.  As expected, the size of the death reduction induced by the 

state SIPO grows much larger when the incubation period and time from symptoms until 

possible death are excluded from the analysis.  The estimated treatment effect grows later in the 

 
39 In other words, the implied mortality rate is based on (∆ Death Rate / ∆ Case Rate) and may be different than the 
average mortality rate (Total Death Rate / Total Case Rate).  The average treatment effects from the other columns 
imply a marginal coronavirus-related mortality rate of 2.21 percent to 2.53 percent. 
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treatment window and is largest following March 30, when we expect lagged effects on mortality 

due to reaching the sum of the median incubation period and median time until ARDS.  

Specifically, we estimate effect sizes that range from –1.77 to (Table 4, column 1, Panel III) to –

2.17 (Table 4, column 3, Panel III) per 100,000 population, realized on average 20+ days after 

the adoption of the shelter-in-place mandate.  

The potential concerns that arise with matching on low outcome counts during the early 

phase of the outbreak cycle are more pronounced for mortality. 40  In Appendix Figures 10A and 

10B, we examine whether the estimated mortality effects we observe are sensitive to alternately 

matching on only observed covariates and influenza-like illness outpatient visits over a longer 

pre-treatment window (through October 2019).  And, in Appendix Figure 11, we assess 

sensitivity to requiring donor states to have experienced community spread.  The findings 

suggest that we obtain comparable estimated lives saved as those reported in Table 4.  

Specifically, we estimate that the adoption of a SIPO is associated with 636 to 1,556 fewer 

deaths across these specifications, with a median estimate of around 1,436 lives saved. 

Finally, in Table 5, we present difference-in-differences estimates of the effect of 

California’s SIPO on COVID-19-related mortality.  Given low counts of deaths and zero counts 

for a few states during the early periods, we present estimates from Poisson models (columns 1 

and 2) and from an inverse hyperbolic sine transformation of the mortality rate (columns 3 and 

4).  The latter approximates the natural log, is interpreted in a similar manner, but has the 

advantage of retaining observations with zero death counts (Bellemare and Wichman 2020).  

Panel I shows our findings on the average treatment effect in the post-treatment period, while 

 
40 Because death rates during the early phase of the outbreak were low for all states, and 0 for a few states during the 
first few days, we also generated synthetic control estimates for deaths by matching on COVID-19 cases on all pre-
treatment days.  Estimated effects for mortality rates are not sensitive to matching on case rates, and continue to 
indicate a marked reduction in deaths in CA relative to the control group. 
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Panel II decomposes the treatment effect into the early period when death effects should be 

relatively small (time from incubation until ARDS) and the latter period accounting for this lag.  

We find robust evidence across all specifications that California’s SIPO results in a significant 

decline in mortality, on the order of 75.0 percent to 78.8 percent on average over the post-

treatment period.41  The mortality declines from the implementation of the SIPO are generally 

larger in the period following March 30, as expected.  Over this post-incubation-until-ARDS 

period (Panel IV), we find consistent evidence that the SIPO was associated with an 81.6 to 91.6 

percent decline in deaths. 

Taken together, the results from Tables 4 and 5 provide strong evidence that California’s 

SIPO generated substantial short-run public health benefits via reduced coronavirus-related 

mortality. 

 

4. CONCLUSIONS 

In this study we rigorously examine the short-run impact of California’s SIPO on public 

health outcomes.  Specifically, our preferred synthetic control estimates imply that the SIPO led 

to between a 160.9 to 194.7 per 100,000 population reduction in COVID-19 cases and a 3.6 to 

3.9 per 100,000 population reduction in COVID-19-related deaths per 100,000 as of one month 

following the SIPO’s enactment.  These findings are robust to a wide array of choices with 

regards to the donor pool as well as the observables with which we weight potential donor states. 

 
41 Given the possibility of over-dispersion in deaths, we also estimated the count models via negative binomial 
regression.  While computationally more intensive, we find estimated SIPO effects that are qualitatively similar.  For 
example, in column (1) of Panel III, we find that that the SIPO was associated with an 81.7 percent decline in 
deaths.  This compares to an identical decline using a negative binomial model.  Appendix Table 6 presents 
propensity score-weighted difference-in-differences estimates, which imply a 49.0 percent to 51.9 percent decline in 
the death rate on average over the 30 days following the enactment of the SIPO. 
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Moreover, lagged case and mortality effects are consistent with the median incubation period of 

COVID-19 as well as estimates of time from first symptoms until ARDS. 

These findings have several policy implications for pandemic response.  Most important 

is the top line result that SIPOs were effective as slowing the early spread of COVID-19, and 

thus can be an effective tool for subsequent waves of COVID-19 or for future pandemics with 

similar means of transmission, so long as the population responds to future SIPOs in a similar 

manner.  This study also underscores the importance of California’s early action, and serves as a 

plausible upper bound for the benefits of a SIPO.  When compared to estimates from Dave et al. 

(2020a), who find that the average state-level SIPO decreases cumulative cases by 3,073 after 

almost a month, which translates to approximately 47.9 cases per 100,000 population for the 

average state, the benefits of the California SIPO are considerably larger.42 

To the extent that SIPOs’ public health returns are driven by changes in mobility, it 

appears that small changes in mobility can yield large changes in public health.  This study, as 

well as others have found modest, but significant decreases in mobility due to SIPOs (for 

example Cronin and Evans (2020) find that SIPOs decrease foot traffic at businesses by between 

4 and 21 percent, depending on the type of business).  These small changes in transmission 

behaviors can have compounding effects (as disease spread can be exponential if left unchecked 

in a population), leading to much larger changes in transmission and mortality outcomes.  Taken 

together with the larger literature, this study serves as an important point of caution for 

policymakers and analysts that small estimates for the effect of NPIs on mobility metrics should 

not be disregarded. 

 
42 Some of this difference may also be due to California being more densely populated than the average state. 
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One should also note that SIPOs are far from costless.  Baek et al. (2020) estimate that 

SIPOs accounted for approximately 23.5 percent of new unemployment insurance claims 

between March 14th and April 4th 2020.  Similarly, Beland, Brodeur and Wright (2020) estimate 

that SIPOs increased the unemployment rate by nearly 4 percentage points.  Back-of-the-

envelope calculations from our own synthetic control analyses suggest that there were 

approximately 14 to 16 job losses per coronavirus case averted and 649 to 703 job losses per life 

saved during this short-run post-SIPO window in California.43  These relatively steep costs need 

to be appropriately balanced against the public health benefits of SIPOs (as well as the benefits 

and costs of other relevant policies that could replace a SIPO) in order to make sound policy 

decisions.  

Finally, there are many questions about the long-run dynamics of SIPOs and of the 

COVID-19 pandemic that are as of yet unresolved.  If some of the deaths or illnesses averted by 

the SIPO were merely postponed to the future when the SIPO is lifted, the intervention’s net 

health benefits will be smaller.  Likewise, whether the job losses accumulated during the SIPO 

are short or long lived has large implications for the economic cost of the policy.  The findings in 

this study (and in the growing literature) establish the short-run effects of the policy – the long-

run impact will likely not be known for years. 

  

 
43 Specifically, we find that the SIPO adoption in California resulted in an increase in 714,773 to 1,001,372 jobs lost 
(as proxied by UI claims), which combined with our estimates of 61,669 to 71,519 total cases averted (from our 
synthetic control estimates), implies 14  to 16  job losses per case averted.  Similarly, the estimated increase in UI 
claims combined with the mortality effects (1,424 to 1,623 deaths averted) imply 649 to 703 job losses per life 
saved. 
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Figure 1: Synthetic Control Estimates for Shelter-in-Place Index 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on seven days of the pre-
SIPO shelter-in-place index. Synthetic California is comprised of DC (.666) and MA (.333). P-values are computed 
using permutation test. Two-sided p-value is .95 and one-sided p-value is .53.  However, the p-value generated 
from a one-sided test of an examination of the March 19 through March 28 is .02. 
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Figure 2: Synthetic Control Estimates for COVID-19 Cases Per 100,000 Population 
 

Panel (a): Matching on 2 Days of Pre-Treatment Days & Observables 
[Full Donor Pool] 

 
Panel (b): Matching on 2 Days of Pre-Treatment Days & Observables  

[Limited Donor Pool] 

 
Panel (c): Matching on 7 Pre-Treatment Days  

[Limited Donor Pool] 

 
Notes: Observable controls include urbanicity, population-weighted density, the mean COVID-19 testing rate, 
number of days a disaster emergency declaration was in place, a pretreatment shelter in place index, the number of 
days the state had a travel ban, and the number of days state public schools were closed. The list of states that 
received positive weights are listed in Appendix Table 1.  The full donor pool is comprised of states that had not 
implemented a statewide SIPO by March 22.  The limited donor pool further limits donor states to the upper 80th 
percentile in population-weighted density and urbanicity.
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Figure 3: Synthetic Control Estimates for COVID-19 Deaths Per 100,000 Population 
 

Panel (a): Matching on 2 Days of Pre-Treatment Days & Observables 
[Full Donor Pool] 

 
Panel (b): Matching on 2 Days of Pre-Treatment Days & Observables 

[Limited Donor Pool] 

 
Panel (c): Matching on 7 Pre-Treatment Days  

[Limited Donor Pool] 

 
Notes: Observable controls include urbanicity, population-weighted density, the mean COVID-19 testing rate, 
number of days a disaster emergency declaration was in place, a pretreatment shelter in place index, the number of 
days the state had a travel ban, and the number of days state public schools were closed. The list of states that 
received positive weights are listed in Appendix Table 4.  The full donor pool is comprised of states that had not 
implemented a statewide SIPO by March 22.  The limited donor pool further limits donor states to the upper 80th 
percentile in population-weighted density and urbanicity. 
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Table 1: Synthetic Control Estimates of Effect of SIPO on  
COVID-19 Cases per 100,000 Population 

 
 (1)  (2) (3) 

 Panel I: Post-Treatment Window -- March 19 to April 20 

SIPO -54.193* -62.870** -58.869* 
P-Value [0.091] [0.030] [0.182] 
One Sided P-Value [0.068] [0.030] [0.091] 
90% Confidence Interval (-108.39,-26.51) (-173.77,-35.19) (-15.63,-174.10) 

 Panel II: Post-Treatment Window -- March 23 to April 20 

SIPO -61.541* -71.412** -66.856* 
P-Value [0.091] [0.030] [0.182] 
One Sided P-Value [0.068] [0.030] [0.091] 
90% Confidence Interval (-123.08,-30.10) (-196.93,-39.97) (-197.28,-17.82) 

 Panel III: Post-Treatment Window -- March 30 to April 20 

SIPO -78.709* -91.286* -85.464* 
P-Value [0.114] [0.061] [0.182] 
One Sided P-Value [0.091] [0.061] [0.091] 
90% Confidence Interval (-157.42,-37.68) (-249.07,-50.26) (-251.41,-23.48) 
 
Donor Pool and Matching Variables 
Size of Donor Pool 43 32 32 
Pre-SIPO Covid-19 Matching Days 2 2 7 
Match on All Observable Controls Yes Yes No 

* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level   
 
Notes: Estimates are generated using synthetic control methods. The matching was constructed using pre-SIPO 
COVID-19 cases per 100,000 and variables listed under each column. All observable controls include state 
urbanicity rate, population-weighted density, mean COVID-19 testing rate, number of days under disaster 
emergency declaration, pre-SIPO shelter in place index, number of days of travel ban, and number of days of school 
closings. The permutation-based p-values are included in brackets below each point estimate.  Confidence intervals, 
generated using Fisher’s permutation test, are reported in parentheses.
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Table 2: Sensitivity of Synthetic Control Estimates to Functional Form and Pre-Treatment Influenza Matches 
 

 Log (COVID-19 Cases per 100,000 Pop)  COVID-19 Cases per 100,000 Population 
  (1)  (2) (3)  (4) (5) (6) (7) 

  
Panel I: Post-Treatment Window -- March 19 to April 20 

SIPO  -0.778** -0.969* -1.075  -63.317** -67.846** -79.207** -53.387** 
P-Value  [0.045] [0.061] [0.242]  [0.023] [0.023] [0.031] [0.031] 
One Sided P-Value  [0.045] [0.061] [0.121]  [0.023] [0.023] [0.031] [0.031] 
90% Confidence Interval  (-1.57,-0.04) (-1.90,-0.30) [-2.19,-0.63)  (-126.63,-36.51) [(135.69,-30.53) (-172.53,-56.19) (-146.69,-16.07) 

   
Panel II: Post-Treatment Window -- March 23 to April 20 

 

SIPO  -0.853** -1.072* -1.175  -71.924** -77.073** -90.014** -60.631** 
P-Value  [0.045] [0.061] [0.242]  [0.023] [0.023] [0.031] [0.031] 
One Sided P-Value  [0.045] [0.061] [0.121]  [0.023] [0.023] [0.031] [0.031] 
90% Confidence Interval  (-1.71,-0.09) [-2.13,-0.34] [-2.43,-0.68]  (-143.85,-41.41) (-154.15,-34.65) (-195.58,-63.93) (-166.16,-18.21) 
  

Panel III: Post-Treatment Window -- March 30 to April 20 

SIPO  -0.934** -1.209* -1.277  -92.158** -98.529** -115.453** -77.390** 
P-Value  [0.045] [0.061] [0.242]  [0.023] [0.023] [0.031] [0.031] 
One Sided P-Value  [0.045] [0.061] [0.121]  [0.023] [0.023] [0.031] [0.031] 
90% Confidence Interval  (-1.87,-0.13) (-2.42,-0.36) (-2.67,-0.70)  (-184.32,-51.76) (-197.06,-44.35) (-247.68,-81.69) (-209.52,-23.21) 
          

Donor Pool and Matching Variables          
Size of Donor Pool  43 32 32  43 43 32 32 
Pre-SIPO Covid-19 Matching Days  2 2 7  0 0 0 0 
Match on All Observable Controls  Yes Yes No  Yes Yes Yes Yes 
Match on Mean Pre-Treatment ILI    No No No  Yes No Yes No 
Match on Weekly Pre-Treatment ILI   No No No  No Yes No Yes 

* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level   
 

Notes: Estimates are generated using synthetic control methods. The matching was constructed using pre-SIPO COVID-19 cases per 100,000 and variables listed 
under each column. All observable controls include state urbanicity rate, population-weighted density, mean COVID-19 testing rate, number of days under 
disaster emergency declaration, pre-SIPO shelter in place index, number of days of travel ban, and number of days of school closings. The permutation-based p-
values are included in brackets below each point estimate. Confidence intervals, generated using Fisher’s permutation test, are reported in parentheses. 
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Table 3: Difference-in-Differences Estimates of the Effect of California’s SIPO  
on COVID-19 Cases 

 

* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level  
 
Notes: All estimates include the following controls: COVID-19 testing rate, an indicator for a non-essential business closure 
order or a targeted SIPO in a given state-day, an indicator for whether a state has issued a travel ban, an indicator for whether 
a state declared a disaster emergency, an indicator for whether precipitation fell in the state, average temperature, an indicator 
for whether schools were closed, the COVID-19 testing rate, and state and day fixed effects. P-values, generated using 
permutation tests, are reported in brackets. Confidence intervals, generated using Fisher’s permutation test, are reported in 
parentheses.  
 
 
 

  

 Cases Per 100,000  Log (Cases Per 100,000)   

 (1) (2)  (3) (4) 

 
 

Panel I: Post-Treatment Effect 
SIPO -62.35** -44.11  -0.97* -0.889* 
P-value [0.023] [0.121]  [0.068] [0.061] 
90% Confidence Interval (-89.20, 22.11) (-92.18, 46.84)  (-1.25, 0.14) (-1.77, 0.15) 
      
N 1804 1353  1796 1351 

 
 

Panel II: Lagged Effects 
March 19-22  11.51 19.84  -0.322 -0.329 
P-value [0.954] [0.939]  [0.182] [0.121] 
90% Confidence Interval (6.11, 22.81) (12.74, 39.69)  (-0.80, 0.17) (-0.69, 00.03) 
      
March 23-29 -18.22** -0.53  -0.814* -0.786* 
P-value  [0.023] [0.636]  [0.068] [0.061] 
90% Confidence Interval (-30.02, -0.84) (-15.23, 21.02)  (-1.62, -0.11) (-1.57, 0.11) 
      
March 30+ -92.23*** -64.49  -1.265** -1.218** 
P-value [0.023] [0.151]  [0.023] [0.030] 
90% Confidence Interval (-163.79, 27.01) (-138.88, 78.50)  (-2.39, 0.06) (-2.43, 0.05) 
      
N 1804 1353  1796 1351 
States? Full Limited  Full Limited 



40 
 
 

Table 4: Synthetic Control Estimates of Effect of SIPO on  
COVID-19 Deaths per 100,000 Population 

 
 (1)  (2) (3) 

 Panel I: Post-Treatment Window -- March 19 to April 20 

SIPO -1.199 -1.392 -1.49 
P-Value [0.744] [0.758] [0.848] 
One Sided P-Value [0.419] [0.455] [0.242] 
90% Confidence Interval (-3.74,0.79) (-5.10,1.17) (-5.74,1.25) 

 Panel II: Post-Treatment Window -- March 23 to April 20 

SIPO -1.365 -1.583 -1.691 
P-Value [0.744] [0.788] [0.848] 
One Sided P-Value [0.419] [0.485] [0.242] 
90% Confidence Interval (-4.25,0.90) (-5.80,1.33) (-6.53,1.42) 

 Panel III: Post-Treatment Window -- March 30 to April 20 

SIPO -1.772 -2.044 -2.165 
P-Value [0.767] [0.818] [0.848] 
One Sided P-Value [0.419] [0.485] [0.242] 
90% Confidence Interval (-5.47, 1.12) (-7.50,1.75) (-8.42,1.85) 
    
Donor Pool and Matching Variables 
Size of Donor Pool 43 32 32 
Pre-SIPO Covid-19 Matching Days 2 2 7 
Match on All Observable Controls Yes Yes No 

* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level   
 
Notes: Estimates are generated using synthetic control methods. The matching was constructed using pre-SIPO 
COVID-19 deaths per 100,000 and variables listed under each column. All observable controls include state 
urbanicity rate, population-weighted density, mean COVID-19 testing rate, number of days under disaster 
emergency declaration, pre-SIPO shelter in place index, number of days of travel ban, and number of days of school 
closings. The permutation-based p-values are included in brackets below each point estimate.  Confidence intervals, 
generated using Fisher’s permutation test, are reported in parentheses.
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Table 5: Difference-in-Differences Estimates of the Effect of California’s SIPO  
on COVID-19 Deaths 

 

* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level  
 
Notes: All estimates include the following controls: an indicator for whether a state has issued a travel ban, an indicator for 
whether a state declared a disaster emergency, an indicator for whether precipitation fell in the state, average temperature, an 
indicator for whether schools were closed, the COVID-19 testing rate, and state and day fixed effects. P-values, generated 
using permutation tests, are reported in brackets. Confidence intervals, generated using Fisher’s permutation test, are reported 
in parentheses. 

 

 
Poisson Model  

of Deaths 
 OLS Model of Inverse  

Hyperbolic Sine of Deaths  

 (1) (2)  (3) (4) 

 
 

Panel I: Post-Treatment Effect 
SIPO -1.54** -1.55**  -1.687* -1.386* 
P-value [0.045] [0.030]  [0.068] [0.061] 
90% Confidence Interval (-3.01, -1.08) (-2.58, -0.99)  ( -3.37, -0.41)  (-2.77, 0.15) 
      
N 1804 1353  1804 1353 

 
 

Panel II: Lagged Effects 
March 19-22  -0.477 -0.433  -0.149 -0.307 
P-value [0.182] [0.212]  [0.478] [0.212] 
90% Confidence Interval (-1.25, -0.01) (-0.81, 0.07)  (-0.68, 0.80) (-1.02, 0.70) 
      
March 23-29 -1.141* -1.108*  -1.088 -0.78* 
P-value [0.068] [0.061]  [0.136] [0.091] 
90% Confidence Interval (-2.28, -0.59) (-1.78, -0.72)  (-2.74, 0.31) (-1.62, -0.002) 
      
March 30+ -1.832** -1.773**  -2.474* -1.693** 
P-value [0.045] [0.030]  [0.068] [0.030] 
90% Confidence Interval (-3.06, -1.57) (-1.98, -1.43)  (-4.95, -1.16) (-2.74, -1.28) 
      
N 1804 1353  1804 1353 
Donor Pool? Full Limited  Full Limited 
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Appendix Figure 1.  COVID-19 Trends by State, March 12-April 20, 2020 
 

Panel (a): COVID-19 Cases Per 100,000 

 

Panel (b): COVID-19 Deaths Per 100,000 
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Appendix Figure 2.  Sensitivity of Synthetic Control Estimates to Two-Week Pre-Treatment Period 
[All Models Match on Two Pre-Treatment Covid-19 Days and the Full Set of Observable Characteristics] 

 
 
 

 

Panel (b): COVID-19 Cases – Limited Donor Pool 

 
Note: Synthetic CA is comprised of GA (.508), NE (.226), TX (.10), 
DC (.098), CO (.066), & MD (.001) 
 

Panel (a):COVID-19 Cases – Full Donor Pool 

 
Note: Synthetic CA is comprised of GA (.566), NE (.245), DC (.075) 
CO (.063), IA (.034), & TX (.016). 

 

Panel (c): COVID-19 Deaths – Full Donor Pool 

 
Note: Synthetic CA is comprised of NV (.413), FL (.261), VA (.154), CO 
(.116), SD (.052). 

 

Panel (d): COVID-19 Deaths – Limited Donor Pool 

 
Note: Synthetic CA is comprised of FL (.458), NV (.289), CO (.253). 

 
 

Notes: Estimate is generated using synthetic control methods. All observable controls include urbanicity, population-weighted density, testing rate, disaster emergency 
declaration, shelter in place index, and school closing.  The full donor pool is comprised of states that had not implemented a statewide SIPO by March 19 and March 23.   
The limited donor pool further limits donor states to the upper 80th percentile in population-weighted density and urbanicity. 
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Appendix Figure 3.  Trends in Shelter in Place Index and “File for Unemployment” in CA 

and the U.S. 
 

 
  



45 
 
 

Appendix Figure 4. Sensitivity of Synthetic Control Estimates of COVID-19 Cases to 
Community Spread 

Panel (a): Donors Restricted to States with at Least 10 COVID-19 Cases 

 
Panel (b): Donors Restricted to States with at Least 50 COVID-19 Cases 

 
Panel (c): Donors Restricted to States with at Least 100 COVID-19 Cases 

 
Notes: Estimate is generated using synthetic control methods. All observable controls include urbanicity, 
population-weighted density, testing rate, disaster emergency declaration, shelter in place index, and school closing.  
The full donor pool is comprised of states that had not implemented a statewide SIPO by March 19 and March 23.    
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Appendix Figure 5. Synthetic Control Estimates of Log(COVID-19 Cases) 
Panel (a): Matching on 2 Days of Pre-Treatment Days & Observables 

[Full Donor Pool] 

 
Panel (b): Matching on 2 Days of Pre-Treatment Days & Observables  

[Limited Donor Pool] 

 
Panel (c): Matching on 7 Pre-Treatment Days  

[Limited Donor Pool] 

 
Notes: Observable controls include urbanicity, population-weighted density, the mean COVID-19 testing rate, 
number of days a disaster emergency declaration was in place, a pretreatment shelter in place index, the number of 
days the state had a travel ban, and the number of days state public schools were closed. The full donor pool is 
comprised of states that had not implemented a statewide SIPO by March 22.  The limited donor pool further limits 
donor states to the upper 80th percentile in population-weighted density and urbanicity. 
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Appendix Figure 6A.  Sensitivity of Synthetic Control Estimates of COVID-19 Cases to 
Pre-Treatment Weekly Influenza Match 

 

Panel (b): COVID-19 Cases – Limited Donor Pool 

 
Note: Synthetic CA is comprised of MD (.228), HI (.225), MA (.216), IA (.136), CO (.095), NV (.062), & DC (.039). 

 

Panel (a):COVID-19 Cases – Full Donor Pool 

 
Note: Synthetic CA is comprised of MA (.314), HI (.299), MD (.274), NV (.062), & DC (.039) 

 
 
 

Notes: Estimate is generated using synthetic control methods. All observable controls include urbanicity, population-weighted 
density, testing rate, disaster emergency declaration, shelter in place index, and school closing.  The full donor pool is comprised 
of states that had not implemented a statewide SIPO by March 19 and March 23.  The limited donor pool further limits donor 
states to the upper 80th percentile in population-weighted density and urbanicity. 



48 
 
 

Appendix Figure 6B.  Sensitivity of Synthetic Control Estimates of COVID-19 Cases to 
Pre-Treatment Mean Influenza Match 

 

Panel (b): COVID-19 Cases – Limited Donor Pool 

 
Note: Synthetic CA is comprised of MD (.525), MA (.303), UT (.144), & DC (.028). 
 

Panel (a):COVID-19 Cases – Full Donor Pool 

 
Note: Synthetic CA is comprised of MD (.409), TX (.196), MA (.19), CO (.126), & DC (.79). 

Notes: Estimate is generated using synthetic control methods. All observable controls include urbanicity, population-
weighted density, testing rate, disaster emergency declaration, shelter in place index, and school closing.  The full donor pool 
is comprised of states that had not implemented a statewide SIPO by March 19 and March 23.  The limited donor pool 
further limits donor states to the upper 80th percentile in population-weighted density and urbanicity. 
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Appendix Figure 7. Sensitivity of Synthetic Control Estimates of COVID-19 Cases to Full 

Period Testing Match 

 
Notes: Estimate is generated using synthetic control methods. All observable controls include urbanicity, 
population-weighted density, testing rate, disaster emergency declaration, shelter in place index, and school closing.  
The full donor pool is comprised of states that had not implemented a statewide SIPO by March 19 and March 23.  
The donor pool further limits donor states to the upper 80th percentile in population-weighted density and urbanicity. 
Synthetic CA is comprised of TX (.255), MA (.202), CO (.124), NV (.117), MD (.107), AZ (.098), DC (.061), & UT 
(.035). 
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Appendix Figure 8. Synthetic Control Estimates for COVID-19 Testing Rates 

 
Notes: Estimate is generated using synthetic control methods. All observable controls include urbanicity, 
population-weighted density, testing rate, disaster emergency declaration, shelter in place index, and school closing.  
The donor pool is comprised of states that had not implemented a statewide SIPO by March 19 and March 23, and 
fall in the upper 80th percentile in population-weighted density and urbanicity. Synthetic CA is comprised of TX 
(.741), MD (.122), RI (.089), & DC (.048). 
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Appendix Figure 9. Synthetic Control Estimates for Daily COVID-19 Case Rates 

 
Notes: Estimate is generated using synthetic control methods. All observable controls include urbanicity, 
population-weighted density, testing rate, disaster emergency declaration, shelter in place index, and school closing.  
The donor pool is comprised of states that had not implemented a statewide SIPO by March 19 and March 23, and 
fall in the upper 80th percentile in population-weighted density and urbanicity. Synthetic CA is comprised of MA 
(.386), MD (.334), TX (.168), & CO (.106). 
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Appendix Figure 10A. Sensitivity of Synthetic Control Estimates of COVID-19 Deaths to 
Pre-Treatment Weekly Influenza Match 

 
 

Panel (b): COVID-19 Deaths – Limited Donor Pool 

 
Note: Synthetic CA is comprised of CO (.364), NV (.241), OH (.229), & KS (.141). 

 

Panel (a): COVID-19 Deaths – Full Donor Pool 

 
Note: Synthetic CA is comprised of CO (.361), NV (.259), OH (.216), & KS (.152). 

 
 
 

Notes: Estimate is generated using synthetic control methods. All observable controls include urbanicity, population-
weighted density, testing rate, disaster emergency declaration, shelter in place index, and school closing.  The full donor pool 
is comprised of states that had not implemented a statewide SIPO by March 19 and March 23.  The limited donor pool further 
limits donor states to the upper 80th percentile in population-weighted density and urbanicity. 
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Appendix Figure 10B. Sensitivity of Synthetic Control Estimates of COVID-19 Deaths to 
Pre-Treatment Mean Influenza Match 

 
 

Panel (b): COVID-19 Deaths – Limited Donor Pool 

 
Note: Synthetic CA is comprised of NV (.402), CO (.317), MD (.195), TX (.069) & AZ (.017). 

 

Panel (a): COVID-19 Deaths – Full Donor Pool 

 
Note: Synthetic CA is comprised of VA (.5442), CO (.40), DC (.028), & TX (.021). 

 
 
 

Notes: Estimate is generated using synthetic control methods. All observable controls include urbanicity, population-
weighted density, testing rate, disaster emergency declaration, shelter in place index, and school closing.  The full donor pool 
is comprised of states that had not implemented a statewide SIPO by March 19 and March 23.  The limited donor pool further 
limits donor states to the upper 80th percentile in population-weighted density and urbanicity. 
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Appendix Figure 11. Sensitivity of Synthetic Control Estimates of COVID-19 Deaths to 
Community Spread 

Panel (a): Donors Restricted to States with at Least 10 COVID-19 Cases 

 
Panel (b): Donors Restricted to States with at Least 50 COVID-19 Cases 

 
Panel (c): Donors Restricted to States with at Least 100 COVID-19 Cases 

 
Notes: Estimate is generated using synthetic control methods. All observable controls include urbanicity, 
population-weighted density, testing rate, disaster emergency declaration, shelter in place index, and school closing.  
The donor pool is comprised of states that had not implemented a statewide SIPO by March 19 and March 23. 
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Appendix Table 1: List of Donor States that Received Positive Weights 
 

 (1)  (2) (3) 

 
 

Panel I: Positively Weighted States for Figure 2 

 

 

TX (.347) 
MD (.238) 
MA (.158) 
CO (.146) 
DC (.112) 

MD (.339) 
HI (.26) 

MA (.258) 
CO (.084) 
DC (.031) 
NV (.017) 

HI (.484) 
MA (.279) 
DE (.084) 
RI (.073) 
DC (.033) 

 
 

Panel II: Positively Weighted States for Figure 3 

 

 

NV (.479) 
CO (.254) 
MD (.215) 
SD (.052) 

NV (.441) 
CO (.414) 
MD (.145) 

NV (.39) 
CO (.365) 
GA (.173) 
IN (.073) 

    
Donor Pool and Observable Matches 
Size of Donor Pool 43 32 32 
Pre-SIPO covid-19 Days 2 2 7 
Match on All Observable Controls Yes Yes No 

* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level   
 
Notes: Observable controls include urbanicity, population-weighted density, the mean COVID-
19 testing rate, number of days a disaster emergency declaration was in place, a pretreatment 
shelter in place index, the number of days the state had a travel ban, and the number of days state 
public schools were closed. The list of states that received positive weights are listed in 
Appendix Table 4.  The full donor pool is comprised of states that had not implemented a 
statewide SIPO by March 22.  The limited donor pool further limits donor states to the upper 
80th percentile in population-weighted density and urbanicity. 
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Appendix Table 2. Sensitivity of Synthetic Control Estimates to the use of Never-adopting 
or Later-adopting States 

 
 (1) (2) 

  
Panel I: Post-Treatment March 19 to April 20 

SIPO -65.228 -65.826 
P-Value [0.231] [0.182] 
One Sided P-Value [0.231] [0.182] 

  
Panel II: Post-Treatment March 23 to April 20 

SIPO -74.107 -74.792 
P-Value [0.308] [0.182] 
One Sided P-Value [0.308] [0.182] 

  
Panel III: Post-Treatment March 30 to April 20 

SIPO -94.428 -95.323 
P-Value [0.308] [0.182] 
One Sided P-Value [0.308] [0.182] 

Donor Pool Late Adopting SIPO States & 
Never Adopting SIPO States Never Adopting SIPO States 

* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level 
 
Notes: Notes: Estimate is generated using synthetic control methods. The number of donor states 
are 43. The matching was constructed using 2 pre-SIPO Covid-19 cases per 100,000, urbanicity, 
population-weighted density, the mean COVID-19 testing rate, number of days a disaster 
emergency declaration was in place, a pretreatment shelter in place index, the number of days the 
state had a travel ban, and the number of days state public schools were closed. The permutation-
based p-values are included in brackets below each point estimate. We define states that adopted 
SIPO on April 5 or later as Late Adopting SIPO States, and states that never adopted a SIPO as 
Never Adopting SIPO States 
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Appendix Table 3: Sensitivity of Synthetic Control Estimates to Pre-Treatment Day COVID-19 Case Match 
 

 (1) (2) (3) (4) (5) (6) 

  
Panel I: Post-Treatment March 19 to April 20 

 

SIPO -63.478** -47.413** -53.514** -57.520** -42.045 -51.436** 
P-Value [0.023] [0.045] [0.023] [0.023] [0.182] [0.045] 
One Sided P-Value [0.023] [0.045] [0.023] [0.023] [0.159] [0.045] 

  
Panel II: Post-Treatment March 23 to April 20 

 

SIPO -72.055** -53.830* -60.774** -65.324** -47.668 -58.412** 
P-Value [0.023] [0.068] [0.023] [0.045] [0.227] [0.045] 
One Sided P-Value [0.023] [0.068] [0.023] [0.045] [0.159] [0.045] 

  
Panel III: Post-Treatment March 30 to April 20 

 

SIPO -91.665** -68.598* -77.489** -83.299** -60.722 -74.451** 
P-Value [0.045] [0.068] [0.023] [0.045] [0.250] [0.045] 
One Sided P-Value [0.045] [0.068] [0.023] [0.045] [0.159] [0.045] 

Observable used to construct the weights  
Number of Days of Pre-Treat Match ¾ ½ Odd Even All 3 
Match on Pre-Treat Mean of Outcome No No No No Yes No 
* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level 
Notes: Estimate is generated using synthetic control methods. The number of donor states are 43. The matching was constructed using 
pre-SIPO Covid-19 cases per 100,000. The permutation-based p-values are included in brackets below each point estimate. 
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Appendix Table 4: Sensitivity of Synthetic Control Estimates of COVID-19 Cases to 
Community Spread 

 
 

(1) (2) (3) 

  
Panel I: Post-Treatment March 19 to April 20 

SIPO -59.180** -71.641* -50.384 

P-Value [0.049] [0.053] [0.125] 

One Sided P-Value [0.049] [0.053] [0.125] 

  
Panel II: Post-Treatment March 23 to April 20 

SIPO -67.218** -81.409* -57.207 

P-Value [0.073] [0.053] [0.125] 

One Sided P-Value [0.049] [0.053] [0.125] 

  
Panel III: Post-Treatment March 30 to April 20 

SIPO -86.054** -104.281* -72.573 

P-Value [0.073] [0.105] [0.250] 

One Sided P-Value [0.049] [0.053] [0.250] 

Case Threshold for Community Outbreak 10 50 100 

* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level 

 

Notes: Estimate is generated using synthetic control methods. The number of donor states are 43. 

The matching was constructed using pre-SIPO Covid-19 cases per 100,000. The permutation-

based p-values are included in brackets below each point estimate. 
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Appendix Table 5: Synthetic Control Estimates of SIPO on COVID-19 Testing Rate 
 

 
(1) 

  
Panel I: Post-Treatment March 19 to April 20 

SIPO -67.645 

P-Value [0.909] 

One Sided P-Value [0.318] 

  
Panel II: Post-Treatment March 23 to April 20 

SIPO -75.173 

P-Value [0.932] 

One Sided P-Value [0.318] 

  
Panel III: Post-Treatment March 30 to April 20 

SIPO -119.343 

P-Value [0.932] 

One Sided P-Value [0.318] 

* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level 

 

Notes: Estimates are generated using synthetic control methods. The number of donor states are 

43. The matching was constructed using 2 pre-SIPO Covid-19 cases per 100,000, urbanicity, 

population-weighted density, the mean COVID-19 testing rate, number of days a disaster 

emergency declaration was in place, a pretreatment shelter in place index, the number of days the 

state had a travel ban, and the number of days state public schools were closed. The permutation-

based p-values are included in brackets below each point estimate. The donor pool is comprised 

of states that had not implemented a statewide SIPO by March 22 and that fall in the upper 80th 

percentile in population-weighted density and urbanicity. 
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Appendix Table 6: Matched Difference-in-Difference Estimates of Effect of California SIPO on COVID-19 Cases and 
Mortality 

 Log(COVID-19 Cases)  Log(COVID-19 Deaths) 
 (1) (2)  (3) (4) 
  

Panel I:   Estimated Effect on COVID-19 Case: Post-Treatment -- March 19 to April 20 
SIPO -1.101 -1.006  -0.674 -0.732 
P-Value [0.154] [0.132]  [0.365] [0.230] 
N 2042 1755  1637 1367 
  

Panel II:  Estimated Effect on COVID-19 Case: Lagged Effect, Post-Incubation and ARDS 
March 19-22  -0.664* -0.750*  0.186 -0.383 
P-value [0.090] [0.099]  [0.333] [0.251] 
March 23-29 -1.049 -1.059  -0.300 -0.453 
P-value [0.125] [0.148]  [0.346] [0.283] 
March 30+ -1.216 -1.318  -0.987 -1.241 
 [0.199] [0.172]  [0.396] [0.227] 
N 2042 1755  1637 1367 

Weights 
Inverse Probability 

Treatment 

Proportional to the probability of 
being similar to CA relative to the 
probability of being a donor state.     

 
Inverse Probability 

Treatment 

Proportional to the probability of 
being similar to CA relative to the 
probability of being a donor state.     

* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level   
 
Notes: All estimates include the following controls: an indicator for whether a state has issued a travel ban, an indicator for whether a state declared a disaster 
emergency, an indicator for whether precipitation fell in the state, average temperature, an indicator for whether schools were closed, the COVID-19 testing rate, and 
state and day fixed effects. P-values, generated using permutation tests, are reported in brackets.  

 
 


