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Abstract. Recent developments in combined human-computer tutoring systems
show promise in narrowing math achievement gaps among marginalized students.
We present an evaluation of the use of the Personalized Learning2, a hybrid tutor-
ing approach whereby human mentoring and AI tutoring are combined to per-
sonalize learning with respect to students’ motivational and cognitive needs. The
approach assumes achievement gaps emerge from differences in learning opportu-
nities and seeks to increase such opportunities for marginalized students through
after-school programs, such as theReady to Learn program. This program engaged
diverse middle school students from three schools in an urban district. We com-
pared achievement growth of 70 treatment students in this program with a control
group of 380 students from the same district selected by propensity matching to
have similar demographics and prior achievement. Based on standardized math
assessments (NWEA Measures of Academic Progress) given one year apart, we
found the gain of treatment students (6.8 points) was nearly double the gain of the
control group (3.6 points). Further supporting the inference that greater learning
was caused by the math-focused treatment and not by some selection bias, we
found no significant differences in reading achievement between treatment and
control participants. These results show promise that greater educational equity
can be achieved at reasonable costs through after-school programs that combine
the use of low-cost paraprofessional mentors and computer-based tutoring.
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1 Introduction

The impact of combined human mentoring and AI-driven computer-based tutoring on
student performance is encouraging, with an expanding stream of research showing
promise in improving learning gains, especially in mathematics [8, 24]. AIED technolo-
gies involving human-computer teaming can lower the financial cost of personalized
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tutoring and increase student learning [3, 19, 24]. The humanmentors in these teams gen-
erally require less professional andon-the-job training than classroom teachers [8],which
keeps human resource costs low. However, these mentors need additional support in
providing personalized resources and skills development to assist with specific student’s
needs. The use of human-computer teaming, particularly in the wake of the COVID-19
pandemic, gives mentors access to individualized resources using AI-software based on
students’ existing math learning software and mentor input and feedback. We present
results (i.e., EdTech usage, math and reading learning gains and outcomes) from the
deployment of an after-school learning support system that integrates human mentors
and AI tutoring (e.g., [17, 23]), with the aim of substantially reducing income and racial
gaps in learning opportunities and outcomes. The Personalized Learning (PL2) approach
intends to maximize the synergies between the motivational capability of human men-
tors and the ability of computer-aided learning systems to provide low-cost personalized
learning in pursuit of more equitable educational outcomes.

1.1 Related Work

Narrowing the Opportunity Gap. Marginalized students lack the means to access
quality instructional services and experience lesser opportunities for learning [24] cre-
ating an opportunity gap. We define marginalized learners as, “students systematically
denied equitable access to the same opportunities theoretically available to all students
(p. 216)” often due to socioeconomic status, disability, or racial minoritization among
other factors [12]. Racial and economic learning gaps are preventing millions of Ameri-
can students from realizing their potential which perpetuates inequalities of income and
opportunity across generations [2]. Recently, the COVID-19 pandemic has exacerbated
these inequalities with lower student achievement at the start of the 2021–22 school year
(9 to 11 percentile points on standardized achievement assessments) than previous years
hitting marginalized groups the hardest—minority students experiencing high-poverty
[15]. Although achievement was lower across all groups, the achievement gap is present
now more than ever with higher achieving and non-marginalized students making gains
consistent with projected normative growth and marginalized, often under-achieving,
students lagging behind further exacerbating the learning gap [15]. While these are
recent and long-standing problems, researchers have struggled to identify effective solu-
tions. Recent research undertaken in the Chicago Public Schools in some of the city’s
highest-poverty neighborhoods, provides new grounds for hope [3, 7, 11]. Using a ran-
domized control trial consisting of 2,700 students of whom 95%were Black or Hispanic,
they demonstrate that just one year of intensive, personalized tutoring can narrow racial
achievement gaps in mathematics by as much as one third. These gains come at a sub-
stantial cost. With one tutor providing instruction to just two students per class period,
the cost exceeds the threshold of political feasibility in many districts, despite its proven
efficacy.

Offering Low-Cost Tutoring. Advances in computer-aided learning provide a method
of substantially lowering the cost of personalized tutoring, while maintaining the mag-
nitude of the learning gains. Research on AI-driven computer-based tutoring has shown
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computer tutors can substantially accelerate student learning, especially in mathemat-
ics. In one recent large-scale randomized control trial, this technology was shown to
double the rate of math learning [21]. Setren [25] showed that the use of another com-
mercially available tool (eSparks), has a positive effect on learning gains for all students
and can contribute to reducing inequality. Similarly, Muralidharan et al. [19] showed
that a personalized technology-aided after-school program was successful in generating
large learning gains among under-achieving students in a developing country. Despite
positive findings, many students do not partake in the practice opportunities provided.
We propose human mentoring to help motivate students to participate and to round out
their learning experiences.

Supporting the Whole Child. While computer tutors can often provide effective sup-
port for student thinking and learning, these systems do not provide human support for
social motivational development such as self-efficacy building [26], feelings of belong-
ing [31], growth mindset [32], and valuing utility of STEM [10]. Using the last as an
example, motivational support for students and parents to better appreciate the value of
STEM learning produced about 50% greater achievement and future course enrollment,
especially for low-performing and underserved students. Our proposed intervention sup-
ports the whole child similar to Guryan et al. [7] in attending to the social-motivational
needs and relationship building which is particularly important in middle school years.
Milner [18] posits that to foster excellence, a learning environment should center on
building and cultivating relationships with students. The synergy of human and com-
puters has been studied in a similar fashion with the use of trialogues (the interaction of
two agents with a human student) to address pedagogical goals and student’s emotional
state [6] and the use of tutorial dialogue agents to increase learning gains [14]. Simi-
larly, peer-to-peer interaction within intelligent tutoring systems to scaffold learning has
been researched via adaptive collaborative learning supports for both improving content
learning and collaboration [30].

2 The Personalized Learning2 Approach

Introduced in Schaldenbrand et al. [24], PL2 is a learning app that syncs with students’
existing math learning software and mentor input and feedback to improve students’
math achievement.1 This paper presents an evaluation of the general PL2 approach, as
both a learning app and tutoring method, to human-computer teaming for motivational
mentoring and content tutoring. By combining research-driven mentor training with
AI-powered software, the PL2 approach improves mentoring efficiency by connecting
mentors to personalized resources with the click of a button. This connection is achieved
by a web app used by mentors and mentor supervisors. The PL2 approach serves out-
of-school tutoring programs, which choose a computer-based math tutoring system for
students to use. The data from student interactions is passed to the PL2 web app to
power mentor decisions. Mentors make post-session reflections based on reports of
student effort and progress. Mentors work with students to set or modify intermediate

1 http://personalizedlearning2.org/.

http://personalizedlearning2.org/
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effort goals, much like the 10,000 step goals in physical fitness apps, such as doing 40
min of math practice a week. When students are missing effort or progress goals, the
PL2 app provides suggestions for resources that the mentor can use themselves or with
students to enhance student motivation, cognition, or metacognition.

PL2 has been integrated with several math EdTech systems [24]. The two used in the
evaluationwe report onwereMATHia andALEKS.MATHia (formerly Cognitive Tutor)
uses a cognitive model of student problem solving to implement the model tracing and
knowledge tracing algorithms for personalized tutoring [23]. It has been demonstrated
to improve student learning in large-scale randomized field trials (e.g., [21]). ALEKS
is an intelligent tutoring system based on knowledge space theory and it too has been
demonstrated to improve student learning [17].

Fig. 1. The Ready to Learn program 2-h in-person format commences with fellowship, followed
by rotations between AI and in-person tutoring (40 min. each), and ends with reflection and team
building. Students shown working with an in-person mentor and AI tutors.

2.1 Description of the Program

The Ready to Learn (RtL) program is offered by the Center for Urban Education at
the University of Pittsburgh (Pitt). The program is a combination tutoring-mentoring
initiative that connects students from Pitt and Carnegie Mellon University (CMU) with
middle school students in select urban public schools to provide mentoring and math
tutoring in an out-of-school context. The overarching goal of the RtL program is to pro-
vide students, especially students from disadvantaged contexts (i.e., living in poverty,
experiencing racial bias, being part of a marginalized group) with experiences to sup-
port their academic improvement in mathematics. Since 2019, CMU researchers have
partnered with Pitt’s Center for Urban Education to provide personalized math mentor-
ing. Small scale pilot versions of RtL in the spring and summer of 2019 paved the way
for full implementation in the 2019–2020 academic year and following summer. RtL
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combines small group lessons, individual mentoring with trained CMU and Pitt under-
graduate students, student engagement with adaptive AI-driven learning software, and
use of the Personalized Learning2 app to help mentors work together with technology to
customize the learning experience for each student. The in-person session format (see
Fig. 1) consisted of both a human personalized math lesson and personalized computer-
based tutoring provided by the MATHia intelligent tutoring system. Because of the
COVID pandemic, the program moved online in the summer of 2020. At the same time
for logistical reasons, the computer-based tutoring was changed to ALEKS. RtL builds
student math confidence and competence at no cost to students or to partnering schools.
In the evaluation we describe below we included students that participated in an RtL
program between the available assessments, that is, during the spring and summer of
2020.

By relying on undergraduate mentors and off-the-shelf math learning software and
keeping the price of subscriptions to the PL2 app at reasonable levels, future implemen-
tations may be able to deliver learning gains for a modest cost per additional student.
Our calculations suggest a mentor cost of $360 per student/year.2 With the addition of
an annual EdTech license cost per student (i.e., $27 Mathia, $179.95 for ALEKS) and
an annual PL2 student fee ($10), the cost of our intervention becomes $397–$550 per
student. Thus, a marginal cost of about $500 per student is attainable—a fraction of the
$3,500–$4,300 per student for other high-dosage tutoring programs [8].

3 Method

Participants in treatment and control groups included students mostly entering grades
6–7 at the 2019–2020 school year from three schools located in a medium-sized, urban,
Pennsylvania school district. Two of the three schools have a higher proportion of dis-
advantaged students compared to the district aligning with the goal of RtL of reach-
ing marginalized groups. The majority of students were in 6th (57%) and 7th grade
(33%) grade. Students’ demographics are summarized in Table 1. Among the treatment,
approximately 74% were Black with an approximately equal gender distribution (48%
female). Most of the participants were eligible for free or reduced lunch (71%) and 20%
were receiving an Individualized Education Program (IEP), which is a special education
service.

Students’ achievementwasmeasured by theNWEAMeasures ofAcademic Progress
(MAP) assessment which the district administered a few times per year assessing stu-
dents’ math and reading achievement. In our evaluation, MAP scores for fall and winter
of 2019–20 were used as pretest scores and MAP scores for fall and winter of 2020–21
were used as posttest scores. We used all four test scores to maximize the number of
students for which at least one pre and one post score was available (see missing data
discussion below). We note concerns that majority-based norming of standardized tests
can create cultural bias and may exaggerate achievement gaps [13]. At the same time,

2 Estimated mentor cost: $15/hr.*2 h./session*2 sessions/week*24 weeks/4 students per mentor
= $360 per student/year.
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we note efforts to reduce bias in standardized testing in general [22] and that the ques-
tions on this test are representative of important learning goals for students (e.g., using
rational numbers to solve real-world problems).

Table 1. Demographic group percent distribution (and number) demonstrates about 3/4 of
participants belong to marginalized groups (i.e., Black and low SES)

Group Demographic Treatment (n) Control

Gender Female 48% (34) 52% (199)

Race Black 74% (52) 81% (306)

White 20% (14) 11% (43)

Hispanic 3% (2) 5% (19)

Free/Reduced lunch Yes 71% (50) 79% (301)

IEP status IEP 20% (14) 17% (64)

Control Group Creation via Propensity Matching. Toward our goal to evaluate whether
extra learning opportunities provided by the PL2 approach enhanced student learning,
we created a matched control group of similar students who did not receive these oppor-
tunities. The district provided anonymized score and demographic data from a total
of 20,628 students across all grades for academic years 2019–20 and 2020–21. This
data provided scores and demographics for the 72 students that participated in the PL2

treatment. These treatment demographics and pre-test scores were used as input into a
rigorous propensity matching process to select a set of students as a control who were
as similar as possible in demographics, grade level, and pre-test scores. An optimal
full matching method [9, 27] was used to match each treatment student with multiple
matching control students. Initially, all demographic factorswere used tomatch students.
However, gender and socioeconomic status (determined by free and reduced lunch des-
ignation) were found to be non-significant factors to balance groups and were removed
frommatching criteria. In the final matching, 70 students out of 72 in the treatment group
were matched with 380 control students based on grade level, race, IEP (Individualized
Education Program) status, and pretest math scores. The two students dropped from the
treatment had a combination of these features for which there was no adequate match.
Grade level was defined as an exact matching factor and a clipper value was defined for
pretest math scores to ensure that matched units are close enough in terms of pretest
math scores. In addition to propensity score matching, manual matching using exact
matching of grade level, gender, race, socioeconomic status, IEP group, and math score
within a 3-point range was used. Manual matching replicated all significant differences
reported below with similar magnitudes.

Pandemic, Missing Data, and Imputation. Especially because of the pandemic, some
participants completed only one of the two pre or posttests, mostly in fall 2020. We
started with a total of 13,554 students in the district with at least one pretest and posttest



372 D. R. Chine et al.

test score. The test with the highest missing rate was fall 2020 (14.9% control, 15.3%
treatment). Missing data for all other tests ranged between 0% and 8.3%. Missing data
were imputed using a single deterministic imputation model based on linear regression
using the MICE package in R [29]. In this method, all demographic factors were entered
as predictors and plausible synthetic values were generated for incomplete test scores.
Incomplete math and reading scores were imputed separately. In addition to the single
imputation method, multiple imputation based on stochastic regression with random
error added to predicted values was tested. This method was tested with 20 samples. The
results of both single andmultiple imputation were identical with respect to all statistical
threshold judgements. Since multiple imputation produces different matched samples,
we present subsequent results using the single matched sample resulting from the single
imputation method.

4 Results

Math Learning Gains. Figure 2a summarizes pre-to-post learning gains for the treat-
ment group (rightmost bar) and a matched demographic control (leftmost bar) as well
as two other reference points, a national average gain and a non-matched grade level
control. On average, students in the treatment group grew 6.8 Rasch Interval Unit (RIT)
points from pre to posttest, compared to 3.6 points for students in the matched control.
NWEA MAP reports a typical one-year average growth as 5.5 RIT points [20].

Fig. 2. a) Math test score gain comparison. b) Mean pre and posttest results. Both (a) and (b)
illustrate the substantial gain for RtL participants compared to the matched control.

Further contextualizing this difference, we calculated the average growth in the same
period for a non-matched control group, which included all students in the same grade
without accounting for demographics. The non-matched control group showed a growth
of 4.5 points in the same period, higher than the matched control, suggesting that the RtL
program met its goal of working with disadvantaged students. In addition, the results
may indicate evidence of the “COVID slide” among the control group given that the 3.6-
point gain and grade level, “non-demographic” group gain of 4.5 points, are significantly
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lower than the average MAP expected annual growth. This aligns with the pandemic-
related lag in mean growth evidenced by Lewis et al. [16] with RIT scores ranging
approximately 2–3 points lower than pre-pandemic years dependent upon grade level
and test administration. Past performance data of the participating schools in comparison
with national growth gains are needed to confirm evidence of “COVID slide.” The most
striking finding was the substantial growth differences among RtL participants with
students performing significantly over the normative one year’s growth.

Figure 2b provides average pre and posttest results for the matched control and RtL
treatment. To assess whether the RtL treatment had a statistically greater pre-posttest
gain than the matched control, we performed a repeated measures regression analysis.
The model predicted MAP scores using group (experimental vs. control), test-time (pre
vs. post) and the interaction between the two variables. As can be seen in Table 2, all
students performed better in the posttest tests than the pretest tests, β = 3.60, t (448) =
8.30, p < .0001. Importantly, the interaction between type of test and group was also
statistically significant, β = 3.21, t (448)= 2.92, p= .0004. MAP scores for students in
the treatment group improved considerably more than for students in the control group
(effect size of d = 0.40). An analysis of density plots of pre and posttest performance
suggest the treatment raised student posttest performance across nearly the entire range
of student pretest performance levels.

Table 2. ANOVA of math score differences between treatment and control groups

Variable Estimate SE df t p

(Intercept) 211.16 0.79 520.30 267.17 0.000***

Treatment 3.82 2.00 520.30 1.90 0.057

TestTime = PostTest 3.60 0.43 448.00 8.30 0.000***

Treatment × TestTime 3.21 1.10 448.00 2.92 0.004**

*** p < 0.001, ** p < 0.01, * p < 0.05

Reading Learning Gains. To ensure the observed differences in math performance
among treatment and control participants were not driven by selection bias or an overall
“mentoring effect,” similar analysis was conducted using nonequivalent-groups design
comparing students’ reading test score gains [28]. Unlike what we saw for math MAPs
scores, on average students in both the control and treatment group showed similar
growth in reading over the span of a year (2.1 RIT score points for the control group and
2.7 RIT score points for the treatment group). As we saw before, this growth is below
the national average (4.5 RIT points).

Using statistical analyses similar to that used with math scores, we saw an overall
positive growth in reading scores frompre to posttest,β = 2.05, t (417)= 4.20, p< .0001,
but no overall effect of treatment, β = 1.43, t (492.02)= 0.67, p= .051, nor evidence of
an interaction between the treatment group and time of the test, β = 0.61, t (417)= 0.50,
p = .619. Overall, these findings suggest that there is no overall “mentoring effect”, or
improvement in student performance due to the noncognitive effects of mentoring (i.e.,
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social-motivational supports, relationship building) that extends beyond the targeted
math learning gains. In addition, the results support the exclusion of a selection effect
or the possibility that the RtL treatment students are generally better, more motivated
students. The differences between control and treatment groups on math MAPs scores
are likely due to the RtL treatment.

EdTech Usage and Outcomes. We investigated the role of the computer tutoring ele-
ment of the PL2 approach to combined human-computer mentorship by analyzing the
relationship between students’ EdTech usage during the program and their MAP scores.
We combined data from both EdTech sources and used a measure common to both: total
time in the program. Fifty-four students usedMATHia and 16 used ALEKS. On average,
students spent a median 102 min in the educational technology system during the RtL
program (M = 150.70, SD = 201.00). We used a multiple regression model predicting
student pre-post change, using pretest, EdTech usage (mins) and their interaction, as well
as the type of EdTech used and its interaction with EdTech usage as predictors. The type
of EdTech used did not have a significant relationship with score growth, β = 3.16, t
(64)= 0.72, p= .48, and did not vary depending on amount of EdTech usage, β = 0.20,
t (64) = −1.10, p = .28. Pretest scores also did not have a significant relationship with
score growth either, β = 0.03, t (64)=−0.32, p= .75. Importantly, there was a positive
relationship between minutes spent on EdTech and score growth„ β = 0.18, t (64) =
2.22, p = .03, indicating that spending more time on EdTech during the RtL program
was associated with higher learning growth. Moreover, the relationship between EdTech
usage and learning growth was moderated by pretest scores, β = −0.001, t (64) = −
2.10, p = .04.

5 Discussion and Conclusion

The combined human-computer personalized approach of PL2 is based on the follow-
ing hypotheses, which we posit as explanations for the demonstrated enhanced learning
gains of the RtL participants in this study. Many marginalized students are not given suf-
ficient learning opportunities [24]; thus, they do not get the deliberate practice they need
to achieve success [5]. Educational technologies can provide such deliberate practice,
which is one piece of PL2, but only if the technology is used. Thus, the second piece of
PL2 is the notion that human mentors provide needed social-motivational support that
help students engage in rigorous deliberate practice. Afterall, deliberate practice is moti-
vationally challenging [4]. PL2 helps human mentors not only personalize their math
content tutoring, but also personalize motivational support. It gives mentors strategies
for relationship building, which is foundational to student learning outcomes [18] and
helps them personalize whether a student’s effort could be enhanced by one or another
motivational intervention, including growth mindset [32], valuing utility value of STEM
[10], and self-efficacy building [26].

There is limited flexibility in schools to add extra learning opportunities and there
is good evidence that out-of-school learning opportunities are a major source of oppor-
tunity gaps. For example, evidence of “summer slide” indicates that racial achievement
gaps widen over the summer and implicate greater learning opportunities for privileged
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students than for marginalized students [1]. Recently, the “COVID slide” has exacer-
bated such opportunity gaps among marginalized students, particularly in math [15]. No
amount of improvement during the school day will address this opportunity gap.

Given our goal to increase student opportunities beyond those available schools, we
did not seek or create a control group that was matched for opportunities. Some students
in the matched control may have attended other out-of-school programs. To be sure,
out-of-school opportunities intended to support academic learning do not necessarily
do so. Our results demonstrate that our out-of-school activities, which mix human and
computer tutoring, do enhance student learning and quite substantially.

In addition, we hypothesize one of the reasons for the positive academic impact
evidenced from the PL2 approach comes from the intentionally designed culturally
relevant training and tutoring practices within the RtL program format. Guryan et al. [8]
reports similar success of “high impact” tutoring, however, occurring during the school
day taking away from instructional time for other content. In two randomized control
trials (RCTs), Guryan et al. [8] states increased math scores of 0.16 and 0.37 standard
deviations, respectively, with evidence of impacts existing over time. Our results indicate
a larger effect size (d= 0.40), however without the rigor that comes with RCTs. Guryan
et al. [8] reports a cost per participant per year of $3,500 to $4,300. Our research team’s
calculations suggest that marginal costs on the order of $500 per student appear feasible
within a few years, perhaps yielding stronger academic impact without sacrificing valued
school time.

While RCTs are the gold standard experimental researchmethod, they are not always
practical. Quasi-experimental methods are especially valuable early in a project lifecycle
to determine whether the costs of a full RCT are justified.We illustrate cost-effective use
of two quasi-experimental methods, propensity score matching [9, 27] and a nonequiv-
alent dependent variables (NEDV) design [28]. Propensity score matching removes
the costs of random assignment and can be straightforwardly employed when school
partners can provide student-level demographic data. Similarly, school partnership can
make employing the NEDV design simple when the school can provide two kinds of
test results: one test that is aligned with the content of your instructional intervention (a
math test in our case) and one test that is not (a reading test in our case).

While we presented evidence for the benefits of EdTech learning opportunities, we
were not able to similarly investigate the role of the mentor. We hope to explore whether
students learn more if they have mentors that provide more learning opportunities or
that use PL2 more often or more effectively. We are also interested in determining the
role mentor and mentee matching based on demographics and socioeconomics plays
in learning gains. Further research assessing the impact of the online Ready to Learn
(RtL) program will be analyzed to determine the impact of the PL2 system in a virtual
environment with hope of increasing scalability. A fully online version was developed
and implemented during the 2020–2021 school year with a RtL virtual session format
consisting of virtual personalized instruction in conjunction with student self-directed
use of ALEKS in a 4:1 student to mentor ratio.

Our results demonstrate progress in human-computer teaming inmentoring and tutor-
ing providing needed out-of-school learning opportunities and producing substantial and
significant learning. More generally, this work supports the idea that greater educational
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equity can be achieved at reasonable costs by supporting after-school programs with
technology that improves mentoring and student learning.
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