The Interplay Between Race and Voting Preferences
Does Racial Distance Affect the Outcome of School Bond Elections?

Laura Jackson
Ph.D. Student
School of Economic, Political, and Policy Sciences
Department of Public Affairs
University of Texas at Dallas

November 2016

Prepared for the 2016 Association for Public Policy Analysis & Management Conference
Washington, DC
The Interplay Between Race and Voting Preferences
Does Racial Distance Affect the Outcome of School Bond Elections?

Laura Jackson

ABSTRACT

Numerous studies have shown that individuals in one racial group are loath to support the provision of public goods or resources they believe will benefit individuals in a different racial group. However, no research has analyzed the impact racial distance, or the difference in race between students in a school district and voters in the school district, on the outcome of school bond elections.

Understanding the effect racial distance has on the provision of public school facilities, which are often constructed or renovated using funds approved through school bond elections, is important because many states have growing numbers of minority students, whereas the voting age population is often substantially non-Hispanic white.

Using data from the Texas Education Agency, Texas Bond Review Board, and United States Census, this study finds that increased racial distance between white voters and white students negatively influences bond passage, whereas the relationship is positive for black, Hispanic, and Asian racial distance. With this information, scholars and practitioners alike can better understand the interplay between race and voting preferences and its impact on school district facilities.
Introduction

Public schools in many localities depend upon taxpayer-approved bonds to finance facilities (Theobald and Meier 2002), a requirement that is becoming increasingly difficult for school district leaders. While school bond referenda enjoyed widespread support in the 1960s, this support waned in the 1970s (Cataldo and Holm 1983), and the downward trend has continued into the 21st century (Tedin et al. 2001; Bowers et al. 2010a). The difficulty school districts have had in passing bonds is impacting public school facilities. The National Center for Education Statistics (NCES) places a current need of $197 billion to fund new buildings, renovate current facilities, and/or address security and technology enhancements (NCES 2014), which is an increase of $70 billion since their last published report in 2000 (NCES 2000). The NCES findings highlight needs noted in previous reports. The United States General Accounting Office (1995), for example, reported that 60% of the public schools in the United States need some type of facility upgrade, and in their review of the state of public schools, Crampton et al. (2001) estimate an unmet infrastructure need exceeding $266 billion.

Despite the established need for public school facility improvements and decreasing support for school district bonds, Theobald and Meier (2002, 1) write, “School bond elections receive little attention in political science or education policy literature, and the research that does exist is based on the observations of a single or a handful of elections,” and Bowers and Lee (2013) claim that while the subject was fairly well reviewed in the 1960s and 1970s, works published since 1973 have been sparse. One variable, in particular, that is lacking in the literature, is the impact of racial distance, or the difference in race between students in a school district and voters in the school district, on the outcome of school bond elections. Understanding the impact racial distance has on the provision of public school facilities is important because
many states have growing numbers of minority students, whereas the voting age population is often substantially non-Hispanic white (Collier and Ura 2015).

This paper will address the void in the literature by examining all school bond elections held in the State of Texas from 2004 through 2011. Using probit analysis, it will show that racial distance does, in fact, influence the outcome of school bond elections.

About School Facility Funding

For most states, funding for school construction is contingent upon local voter approval. Forty states require voters to approve bonds for facility construction, and seven additional states allow voters to petition to have bond issues placed on the ballot (Hiller and Spradlin 2010). Some states place additional requirements on districts following a successful school bond election, such as mandating approval from a state agency or state official prior to bond authorization.

The threshold for voter support to pass a bond varies across states. The vast majority of states that hold school bond elections require a simple majority, but school districts in nine states must meet a 55% threshold or higher for bond passage. These thresholds may even change within states depending on the type of district requesting the bond. Missouri, for example, has different percentage thresholds for metropolitan, non-metropolitan, and urban school districts (Hiller and Spradlin 2010). In Texas, the state studied in this analysis, the threshold is 50% plus one vote.

While most states rely solely on local funding for school facilities, as indicated by the 47 states that require or allow for bond elections to approve debt to be repaid by local taxpayers, some states also appropriate state funding to augment local efforts. Texas has two programs to help local districts fund facilities projects after they have been approved by the voters of the
district: Instructional Facilities Allotment (IFA) and Existing Debt Allotment (EDA). The IFA provides funding for the purchase, construction, renovation, and expansion of instructional facilities for districts whose local revenue falls below $35 per student per penny of debt service tax needed. Districts apply for this funding through the Texas Education Agency (TEA), and the funding is limited. TEA prioritizes projects in property-poor districts first, and also gives greater consideration to projects that have been submitted in previous years (Texas Association of School Boards 2016; Texas Education Agency 2016a).

The EDA program also serves to provide funding to school districts in an effort to help them reach $35 per student per penny of debt service tax effort, with a maximum state assistance of 29 cents per $100 assessed property valuation (Texas Education Agency 2016b). Unlike IFA, funding for this program is not based on a prioritization; instead, the Texas Legislature funds EDA each biennium for all qualifying schools that do not receive IFA funds. In order to receive EDA funds, districts must have made at least one payment on the bond on or before August 31 in the year prior to the start of the new fiscal biennium (Texas Association of School Boards 2016).

Both of these programs are fairly new in Texas, with the IFA created in 1997 and the EDA approved in 1999. Further, they only support school districts that do not meet the $35 per student per penny of debt service tax effort on their own. Therefore, these programs do not cover the costs of facilities in all school districts in the state. Finally, the local district must still pass a bond election in order to be eligible for this funding as the state only funds bonds that local voters have approved, thus highlighting the importance of understanding factors that influence school bond election outcomes.
Literature Review

Studies of Factors Related to School Bond Success

Although sparse, existing literature on school bond election outcomes provides some evidence of factors that influence results. These factors can be classified into three categories: internal, external, and financial.

Examples of internal factors that have been analyzed include the size of the school district and the district’s student demographic characteristics. The hypothesis related to the effect of school district size on bond election success states that larger districts will be less likely to pass bonds because the immediate impact of the bond is more likely to be distant. The results of this factor are mixed. Piele and Hall (1973), who completed a literature review of school bond election studies, found that the majority of publications included in their compilation reported no significant relationship between school district size and election outcome. Two recent studies (Bowers and Lee 2013; Beckham and Maiden 2003) are in line with Piele and Hall’s findings of no statistical significance between school district size and likelihood of bond success; however, Bowers et al. (2010a) and Theobald and Meier (2002) found that the relationship is as hypothesized – as district enrollment goes up the likelihood of bond passage goes down.

A school district’s demographic characteristics have also been shown to have a statistically significant impact on bond election success. Specifically, higher percentages of Asian and Hispanic students have been found to lead to a higher likelihood of success (Bowers and Lee 2013; Hickey et al. 2008). Scholars have also included the percentage of low-income students in a district as a measure of the public’s perception of school district need. They generally hypothesize a positive relationship between the percentage of low-income students and
bond success, claiming that voters will infer districts with greater percentages of low-income students face greater financial needs. Results of studies related to the effect of the percentage low-income students on bond results, however, do not support this hypothesis. Theobald and Meier (2002) and Bowers et al. (2010b) find a negative relationship while Bowers and Lee (2013) do not find a statistically significant relationship between the percentage of low-income students and bond success.

External factors that have been shown to influence school bond election outcomes primarily include voter characteristics, specifically voter age, income, and educational attainment. Several studies have tested the hypothesis that older voters are less likely to support a school bond than younger voters, with most finding support for this contention (Piele and Hall 1973; Button 1992; Chew 1992; Hickey et al. 2008; Bowers and Lee 2013). Berkman and Plutzer (2004), however, report more nuanced results. They find that elderly citizens are supportive of school bond proposals unless a significant number of them are new arrivals to the area without strong ties to the community. Theobald and Meier (2002) are an outlier on this variable, reporting no statistically significant relationship between voter age and bond success.

Regarding the influence of voter income on school bond election outcomes, Piele and Hall (1963), Tedin et al. (2001), Blasdon et al. (2003), Colburn and Horowitz (2003), and Brunner and Ross (2010) all find a positive relationship between voter income and school bond passage. Lentz (1999), however, concludes that income only has a positive effect if the election is held in a highly homogenous district. Finally, educational attainment has also been shown to be positively related with school bond passage (Plutzer and Berkman 2005).

Three financial factors that have been tested in studies of school bond elections include the district’s tax rate, the total amount of the bond, and the district’s current indebtedness. As
might be expected, researchers hypothesize negative relationships with bond passage for all three variables. Piele and Hall (1973) found no statistically significant relationship between the tax burden created by the proposed bond and its likelihood of passage; however, more recent studies have reported a negative relationship, in keeping with the hypothesis (Tedin et al. 2001; Stauffacher 2012; Packer 2013). Theobald and Meier (2002), however, reported no statistically significant relationship. The relationship between the amount of the bond and bond passage had mixed results in Piele and Hall’s (1973) review, but more recent studies have consistently reported a negative relationship (Theobald and Meier 2002, Bowers et al. 2010a, Bowers et al. 2010b, Packer 2013).

Studies of the relationship between school district indebtedness and school bond election outcomes have also produced mixed results. Davidson (1967), Hicks (1967), and Goettel (1971) are three of the earliest studies analyzing this variable. Davidson reported a negative relationship between indebtedness and bond election success while Hicks and Geottel did not produce significant results. More recently, scholars have found a positive relationship between district indebtedness and school bond passage (Sielke 1998; Theobald and Meier 2002; Zimmer and Jones 2005; Zimmer et al. 2011; Bowers et al. 2010b). Zimmer and Jones (2005, 541) claim this may be because, “voters in more leveraged school districts have greater tastes for debt.” It should be noted that Bowers et al. (2010a) chose not to include district indebtedness in their model because of high correlations with enrollment and bond amount.

Studies of the Impact of Race on Local Elections

Extensive research on local candidate elections has shown that the race and ethnicity of the voter and the candidate is one of the most consistent predictors of election outcomes (Browning, Marshall, and Tabb 2003; Kaufmann 2004; Hajnal 2007; Oliver 2012; Hajnal and
Trounstine 2014). Addressing the effects of white voter preferences regarding black candidates, Hajnal (2007, 3) claims white voters, “Fear that a black leader will favor the black community over the white community…In short, they imagine that black control will have negative consequences for themselves and their neighbors.” Hajnal and Trounstine (2014, 86) expand the analysis to include multiple races and ethnicities, finding, “Blacks, Latinos, Asian-Americans, and whites tend to vote as blocs and often as competing blocs. Within-group cohesion and across-group division strongly shape urban politics.”

This intergroup competition extends beyond candidates to voters’ outlook on public policies. According to Hutchings and Valentino (2004), the study of racial attitudes as they relate to political preferences can be traced to Sears and Kinder (1971), who introduced the term symbolic racism. The authors define symbolic racism as “a form of resistance to change in the racial status quo based on moral feelings that blacks violate such traditional American values as individualism and self-reliance, work ethic, obedience, and discipline” (Kinder and Sears 1981, 416). The authors claim that symbolic racism is illustrated by white voters who oppose political issues that involve what they view as “unfair” government assistance to blacks (Kinder and Sears 1981).

An alternative theory, known as racial threat theory, posits that voters of one race are less likely to support policies that they feel benefit citizens of another race because they view policymaking as a zero sum game in which their ethnic group will lose power if another receives it (Blumer 1958; Campbell 1965; Giles and Hertz 1994; Giles and Buckner 1993; Giles and Buckner 1996). Regardless of whether it is symbolic racism or racial threat, numerous authors have built upon the works included above, noting their impact on various policy sectors.
For example, Alesina et al. (1999) studied the supply of public goods including education, roads, and sewers and found that voters choose to provide fewer public goods when it is believed that one ethnic group is being taxed to provide public goods for other ethnic groups. Likewise, Luttmer (2001) reported that individuals’ support for more welfare spending increased as members of their own racial group received more welfare dollars. Fox (2004) took this line of research one step further by delving deeper into the reasons for these racial effects on public policy and by considering changes based on the familiarity between the races. Specifically, Fox found that white stereotypes of both blacks and Hispanics affect their support of welfare policies they believe support minorities. The author’s results showed that the more Hispanics there are in a community, the more hardworking whites believe them to be, and thus the more whites support welfare policies (Fox 2004). She found that the opposite holds true for blacks; the more blacks there are in a community, the lazier whites believe they are, and thus whites support welfare policies less.

Further, authors including Putnam (2007) and Goldin and Katz (1999) claim that increased diversity leads to decreased community cooperation overall. Putnam (2007, 149), in particular, found that the more diverse a community is, the more likely it is that all races will “hunker down” and, in his words, “pull in like a turtle.” This will result in a lower confidence level in local government, less likelihood of working on a community project, and less likelihood of giving to a charity or volunteering (Putnam 2007). Goldin and Katz (1999) found similar results in their study of the establishment of secondary schools in the United States. In particular, the authors found that homogenous communities banded together to form high schools more quickly than less homogenous communities.
Racial group competition as it relates to school bond passage is an especially significant issue to address given the history of race in education. Desegregation, in particular, has been shown to have a significant effect on racial attitudes, with a specific impact on bond elections. For example, the citizens of Jackson, Mississippi did not pass a school bond issue between 1964 (the year in which Mississippi integrated) and 1991 (Glaser 2002). Further, in 1964, as Mississippi was beginning to integrate its schools, the legislature created an “escape hatch” provision in its education code, providing grants to white parents to move their children out of the public schools that had been mandatorily integrated by order of a federal judge (Glaser 2002).

In addition to the Mississippi experience, a 1974 survey of 520 parents in Florida found that white parents who opposed school desegregation were less likely to support a school bond that increased taxes, further noting the importance of race and ethnic divisions in school bond issues (Giles et al. 1976). A study of voters in an April 1978 school bond election in Cleveland, Ohio, conducted at a time of a federally mandated desegregation, found that race accounted for 22 percent of vote variance, with black voters more likely to support a bond and white voters less likely to do so (Cataldo and Holm 1983). The next closest measure included in the survey accounted for only 4.6 percent of the variance.

Studies have shown minorities are more likely to support school spending than whites, regardless of desegregation policies. For example, Button (1993, 38) claims, “Blacks favor public school funding more than white citizens, perhaps reflecting the fact that black children are more likely than their white peers to attend public schools.” Bachelor (2001) also found stronger support for school bonds in black neighborhoods as compared to white neighborhoods in a 1998 Lucas County, Ohio, school tax referendum.
Bali (2008) expanded these findings to include Hispanic voters. She analyzed the effect of race on voting in three California education reforms (the elimination of bilingual education, vouchers, and decreasing the bond passage rate to 55%), and found that white voters, black voters, and Hispanic voters differed in their support of all three initiatives. Regarding school bond elections specifically, Piele and Hall (1973), Cataldo and Holm (1983), Button (1993), Bachelor (2001), Tedin et al. (2001), and Bali (2008) all find that minority voters are more likely than white voters to cast their ballots in favor of a school bond.

Research Design

Given the extensive research showing the influence of race on school bond elections, understanding how racial distance might affect the outcome of school bond elections is key. Building on racial threat theory, this paper will analyze the relationship between the racial distance between a school district’s voters and the students in the district and school bond election outcomes. Specifically, it will test the hypothesis that greater racial distance between voters and students in a school district is negatively related to school bond passage.

The hypothesis will be tested using administrative data from school bond elections held in the State of Texas from 2004 through 2011. Because the dependent variable, bond passage, is dichotomous, a probit regression model will be used. Additionally, in order to minimize omitted variable bias, a fixed effect specification will be added at the year level, and the results of both the fixed effects model as well as the model without fixed effects will be reported. Data will come from the Texas Bond Review Board (TBRB), Texas Education Agency (TEA), and the United States Census Bureau.
Dependent Variable

The dependent variable for this analysis is school bond passage, with data provided by the Texas Bond Review Board. The variable will be coded 0 (not passed) and 1 (passed). The study will include all school bond elections held in the State of Texas between 2004 and 2011.

Independent Variable

The independent variable is racial distance, which is calculated by obtaining the absolute value difference between the percentage of the voting age population (VAP) in a school district of a particular race and the percentage of the students in that same district who are of that race. This calculation is made for four races: white, black, Hispanic, and Asian. VAP demographic data is provided by the United States Census Bureau, and student demographic data is provided by TEA.

Control Variables

Based on existing literature, several control variables will be added to the model. First, the amount of the proposed bond has consistently shown a negative relationship with bond passage (Theobald and Meier 2002; Bowers et al. 2010a; Bowers et al. 2010b; Packer 2013). Therefore, the bond amount, as reported by TBRB, will be included as a control variable. School district size has also been shown to influence bond election outcomes; however, the results have been mixed. Piele and Hall (1973), Bowers and Lee (2013), and Beckham and Maiden (2003) report no significant relationship between school district size and bond outcome. Theobald and Meier (2002) and Bowers et al. (2010a), however, find that as district enrollment goes up, likelihood of bond passage goes down. District enrollment, as reported by TEA, will be included in the model.
The demographic characteristics of a school district have also been shown to influence school bond election outcomes. Bowers and Lee (2013) report that higher proportions of Asian and Hispanic students increase the likelihood of passing a bond, and Hickey et al. (2008) find that a higher percentage of Hispanic students increases the likelihood of school bond passage. Findings on the influence of the percentage of economically disadvantaged students are mixed. Theobald and Meier (2002) report a positive relationship between the number of low-income students and bond success, Bowers et al. (2010b) find a negative relationship, and Bowers and Lee (2013) show no statistical significance. School district demographic data, also available from TEA, will therefore be included in the models.

Because bond elections allow school districts to issue debt in order to finance capital projects, it is also important to include the district’s current level of indebtedness in the models. Perhaps contrary to expectations, the impact of school district indebtedness on the outcome of school bond elections has resulted in findings of a positive relationship (Sielke 1998; Theobald and Meier 2002; Zimmer and Jones 2005; Bowers et al. 2010b; Zimmer et al. 2011). District indebtedness is also provided by TEA.

Finally, other variables that should be controlled for in the analysis include the district’s current tax rate, revenue per pupil, and the plant maintenance and operations per pupil. Tax rate is important because higher burdens on property owners could lead them to oppose additional tax increases often created by bond elections. Revenue per pupil and plant maintenance and operations per pupil both provide measures of the need for a bond. School districts with higher revenue per pupil may be perceived to be less in need, whereas districts with higher plant maintenance costs may have older buildings and thus face a greater need for bond funds. Each of these measures is available from TEA.
Results & Analysis

As shown in Table 1, racial distance appears to influence school bond election outcomes for every race tested in both the original model as well as the model including year fixed effects. However, only the racial distance between white VAP and students was in the expected negative direction. Black, Hispanic, and Asian racial distance all produced positive relationships with bond passage. Specifically, with each additional percentage difference between white VAP and white students, the district was 1.5% less likely to pass a bond in the original model, and 1.6% less likely to pass a bond in the model including fixed effects. Black, Hispanic, and Asian racial distance, however, produced results ranging from 1.5% (Hispanic) to 3.6% (Asian) more likely to pass a bond in the original model, and 1.5% (Hispanic) to 3.1% (Asian) more likely to pass a bond in the model with fixed effects.

These results could reflect findings that minority voters, in general, are more likely to support public school funding (Cataldo and Holm 1983; Button 1993; Bachelor 2001; Tedin et al. 2001; Bali 2008). In other words, minorities are more likely to support school bonds even when the students do not reflect their race, whereas white voters’ reluctance to support public spending as compared to minority voters is exacerbated when the perceived beneficiaries do not share their race. These results could also be reflecting continued racial tension dating back to desegregation, resulting in the negative relationship between white racial distance and bond passage. Accurately determining the reasons for this relationship is outside the scope of this paper, but would be an interesting qualitative or mixed methods study.

Several control variables were statistically significant in the original model. Significant internal measures included the percentage of black students in the district, the percentage of Native American students in the district, the percentage of economically disadvantaged students
in the district, and the percentage of limited English proficient students in the district. Only the percentage of black students and percentage of Native American students in a district remained significant after controlling for year fixed effects. The percentage of Hispanic students in a district was also significant in the model with fixed effects.

Financial variables that produced significant relationships included bond amount, total adopted tax rate, and plant maintenance and operations. Bond amount and tax rate were both positively related to bond passage, which was not hypothesized. After controlling for year fixed effects, the relationship between total adopted tax rate and bond passage switched to the hypothesized, negative relationship, showing that this variable may be sensitive to fluctuations in the economy. Bond amount, however, remained positively related to bond passage in the fixed effects model, which is contrary to results of previous studies. Plant maintenance and operations is in the expected direction: the more school districts spend on plant maintenance (a measure for need for the bond), the more likely they are to pass a bond election. District indebtedness was positively related to bond passage in the fixed effects model, a result in keeping with previous studies of this variable.

Conclusion

This study builds on previous findings that race influences local election outcomes, and it adds to the limited literature on public school bond elections by showing that racial distance influences school bond election outcomes, in particular. The finding that racial distance is significantly related to bond passage, negatively for white racial distance and positively for black, Hispanic, and Asian racial distance creates many opportunities for further research. For example, it would be interesting to augment this analysis to determine at what point the racial
distance begins to significantly impact election outcomes. Additionally, a qualitative or mixed methods study that investigates why racial distance matters would also enhance these results.

One of the limitations of this analysis is lack of ability to control for the influence of outside groups. While many Political Action Committees (PACs) form to both support and oppose school bonds across the State of Texas, prior to 2015 these efforts were not tracked at the state level, and local enforcement of disclosure policies differed across districts. As of September 1, 2015, however, all PACs created to support or oppose school bond measures are required to file campaign finance reports with the Texas Ethics Commission, much like candidates for state-level offices (Texas Legislature Online 2016). Therefore, in the future this data will be easily accessible and will inform future research.

Voter turnout data also presents a limitation of this study. Specifically, Voting Age Population (VAP) is not an accurate measure of who actually votes in elections. Voter turnout in local elections is historically very low, and minority turnout is generally lower than white turnout (Holbrook and Weinschenk 2014). Therefore, using VAP in the measure for racial distance likely introduces bias into the analysis. However, Texas does not record demographic information of voters in school bond elections, making a more accurate measure difficult to attain.

Despite these limitations, the current study supports previous findings that race influences election outcomes, and it helps clarify one way in which race impacts school bond elections. This finding is useful to scholars interested in local elections and educational policy as well as public school administrators wishing to pursue bond elections.
Table 1

<table>
<thead>
<tr>
<th></th>
<th>No Fixed Effects</th>
<th>With Fixed Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bond Pass</td>
<td>Bond Pass</td>
</tr>
<tr>
<td></td>
<td>b/se</td>
<td>b/se</td>
</tr>
<tr>
<td>Racial Distance: White</td>
<td>-0.0147+</td>
<td>-0.0158*</td>
</tr>
<tr>
<td></td>
<td>(0.0076)</td>
<td>(0.0072)</td>
</tr>
<tr>
<td>Racial Distance: Black</td>
<td>0.0183*</td>
<td>0.0165*</td>
</tr>
<tr>
<td></td>
<td>(0.0083)</td>
<td>(0.0078)</td>
</tr>
<tr>
<td>Racial Distance: Hispanic</td>
<td>0.0149*</td>
<td>0.0151*</td>
</tr>
<tr>
<td></td>
<td>(0.0075)</td>
<td>(0.0072)</td>
</tr>
<tr>
<td>Racial Distance: Asian</td>
<td>0.0364*</td>
<td>0.0306+</td>
</tr>
<tr>
<td></td>
<td>(0.0177)</td>
<td>(0.0169)</td>
</tr>
<tr>
<td>District Enrollment</td>
<td>-0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>(0.0000)</td>
<td>(0.0000)</td>
</tr>
<tr>
<td>Black Student Percent</td>
<td>-0.0048**</td>
<td>-0.0039*</td>
</tr>
<tr>
<td></td>
<td>(0.0016)</td>
<td>(0.0016)</td>
</tr>
<tr>
<td>Hispanic Student Percent</td>
<td>0.0008</td>
<td>0.0015*</td>
</tr>
<tr>
<td></td>
<td>(0.0007)</td>
<td>(0.0007)</td>
</tr>
<tr>
<td>Native American Student Percent</td>
<td>-0.0413+</td>
<td>-0.0401*</td>
</tr>
<tr>
<td></td>
<td>(0.0217)</td>
<td>(0.0201)</td>
</tr>
<tr>
<td>Asian Student Percent</td>
<td>0.0050</td>
<td>0.0053</td>
</tr>
<tr>
<td></td>
<td>(0.0064)</td>
<td>(0.0064)</td>
</tr>
<tr>
<td>Economically Disadvantaged</td>
<td>-0.0000+</td>
<td>-0.0000</td>
</tr>
<tr>
<td>Student Percent</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
</tr>
<tr>
<td>Limited English Proficient</td>
<td>0.0000+</td>
<td>0.0000</td>
</tr>
<tr>
<td>Student Percent</td>
<td>(0.0000)</td>
<td>(0.0000)</td>
</tr>
<tr>
<td>Bond Amount</td>
<td>0.0001**</td>
<td>0.0001*</td>
</tr>
<tr>
<td></td>
<td>(0.0000)</td>
<td>(0.0000)</td>
</tr>
<tr>
<td>District Indebtedness</td>
<td>0.0028</td>
<td>0.0120*</td>
</tr>
<tr>
<td></td>
<td>(0.0034)</td>
<td>(0.0048)</td>
</tr>
<tr>
<td>Total Adopted Tax Rate</td>
<td>0.2321**</td>
<td>-0.4197**</td>
</tr>
<tr>
<td></td>
<td>(0.0721)</td>
<td>(0.1500)</td>
</tr>
<tr>
<td>Total Per Pupil Expenditures</td>
<td>-0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>(0.0000)</td>
<td>(0.0000)</td>
</tr>
<tr>
<td>Plant Maintenance & Operations</td>
<td>0.0152**</td>
<td>0.0115*</td>
</tr>
<tr>
<td></td>
<td>(0.0049)</td>
<td>(0.0052)</td>
</tr>
</tbody>
</table>

Marginal effects
N = 1,157

+ p < .10; * p < .05; ** p < .01
References

